16.直線x-y+6=0被圓(x+2)2+y2=16截得的弦長(zhǎng)等于( 。
A.$2\sqrt{2}$B.$3\sqrt{2}$C.$4\sqrt{2}$D.$12\sqrt{2}$

分析 求出圓的圓心坐標(biāo)與半徑,利用垂徑定理求解即可.

解答 解:圓(x+2)2+y2=16的圓心(-2,0)半徑為4,圓心到直線的距離為:$\frac{|-2+6|}{\sqrt{2}}$=2$\sqrt{2}$,
由垂徑定理可得直線x-y+6=0被圓(x+2)2+y2=16截得的弦長(zhǎng):2$\sqrt{{4}^{2}-{(2\sqrt{2})}^{2}}$=4$\sqrt{2}$.
故選:C.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系的應(yīng)用,垂徑定理的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知等差數(shù)列-7,-6,-5,…的前n項(xiàng)和Sn,則使得Sn最小的序號(hào)n的值是( 。
A.6B.7C.5或6D.7或8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為$\sqrt{3}$,D為BC的中點(diǎn),則三棱錐A-B1DC1的體積為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,設(shè)點(diǎn)A的極坐標(biāo)為(2,$\frac{π}{6}$),直線l過(guò)點(diǎn)A且與極軸成角為$\frac{π}{3}$,圓C的極坐標(biāo)方程為ρ=$\sqrt{2}$cos(θ-$\frac{π}{4}$).
(Ⅰ)寫(xiě)出直線l參數(shù)方程,并把圓C的方程化為直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線圓C交于B、C兩點(diǎn),求|AB|•|AC|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在棱長(zhǎng)為a的正方體ABCD-A1B1C1D1中,E、F分別為DD1和BB1的中點(diǎn).
(1)求證:四邊形AEC1F為平行四邊形;
(2)求直線AA1與平面AEC1F所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在空間直角坐標(biāo)系中,A(1,-3,1)與B(2,0,-4)之間的距離是$\sqrt{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,角A,B,C所對(duì)邊分別為a,b,c,且$c=\sqrt{2}$,B=45°,面積S=3,則b的值為(  )
A.6B.26C.$\sqrt{6}$D.$\sqrt{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$y=4x+\frac{25}{x}(x>0)$的最小值為( 。
A.20B.30C.40D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在R上的函數(shù)f(x)滿足f(x+6)=f(x),當(dāng)-3<x≤-1時(shí),f(x)=-(x+2)2,當(dāng)-1≤x≤3時(shí),f(x)=x.則f(1)+f(2)+…+f(2015)的值為( 。
A.335B.340C.1680D.2015

查看答案和解析>>

同步練習(xí)冊(cè)答案