2.已知數(shù)列{an}滿足a1=1,an=3n-1+an-1(n≥2)
(Ⅰ)求a2,a3
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式.

分析 (Ⅰ)利用a1=1,an=3n-1+an-1(n≥2)直接計算即可;
(Ⅱ)通過對an=3n-1+an-1(n≥2)變形可知an-an-1=3n-1(n≥2),進(jìn)而利用累加法計算即得結(jié)論.

解答 解:(Ⅰ)∵a1=1,an=3n-1+an-1(n≥2),
∴a2=32-1+1=4,
a3=33-1+4=13;
(Ⅱ)∵an=3n-1+an-1(n≥2),
∴an-an-1=3n-1(n≥2),
∴an-an-1=3n-1,an-1-an-2=3n-2,…,a2-a1=31,
累加得:an-a1=$\frac{3(1-{3}^{n-1})}{1-3}$=$\frac{{3}^{n}}{2}$-$\frac{3}{2}$,
∴an=$\frac{{3}^{n}}{2}$-$\frac{3}{2}$+a1=$\frac{{3}^{n}}{2}$-$\frac{3}{2}$+1=$\frac{{3}^{n}-1}{2}$(n≥2),
又∵a1=1滿足上式,
∴數(shù)列{an}的通項(xiàng)公式an=$\frac{{3}^{n}-1}{2}$.

點(diǎn)評 本題考查數(shù)列的通項(xiàng),利用累加法是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知在△ABC中,點(diǎn)A(-1,0),B(1,0),C為動點(diǎn),記角A,B,C的對邊分別為a,b,c,且abcos2$\frac{C}{2}$=1.
(1)求證:動點(diǎn)C在曲線E:$\frac{{x}^{2}}{2}$+y2=1上;
(2)設(shè)點(diǎn)O為坐標(biāo)原點(diǎn),過點(diǎn)B作直線l與曲線E交于M,N兩點(diǎn),若OM⊥ON,試求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=-x2、y=$\frac{1}{x}$、y=2x+1、y=$\sqrt{x}$在x=1附近(△x很小時),平均變化率最大的一個是( 。
A.y=-x2B.y=$\frac{1}{x}$C.y=2x+1D.y=$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{x-3,x≥9}\\{f[f(x+4)],x<9}\end{array}\right.$,則f(7)的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù)y=$\sqrt{\frac{1}{4}-si{n}^{2}x}$+|sinx|的值域是( 。
A.[-$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$]B.[0,$\frac{\sqrt{2}}{2}$]C.[0,$\frac{\sqrt{3}}{2}$]D.[$\frac{1}{2}$,$\frac{\sqrt{2}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P、Q分別是棱DD1、CC1的中點(diǎn).
(1)畫出面D1BQ與面ABCD的交線,簡述畫法及確定交線的依據(jù).(2)求證:平面D1BQ∥平面PAO.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.高考數(shù)學(xué)有三道選做題,要求每個學(xué)生從中選擇一題作答.已知甲、乙兩人各自在這三題中隨機(jī)選做了其中的一題,則甲乙兩人選做的是同一題的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合U={1,2,3,4,5,6},M={1,3,5},N={1,2,3},則∁U(M∪N)=( 。
A.{4,6}B.{1,2,3,5}C.{2,4,6}D.{2,4,5,6}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.復(fù)數(shù)z=(m-1)(m-10)+ilgm是純虛數(shù),其中m是實(shí)數(shù),則$\frac{1}{1-\overline{z}}$=$\frac{1}{2}-\frac{1}{2}i$.

查看答案和解析>>

同步練習(xí)冊答案