20.已知f(x)是定義在R上的偶函數(shù),且對(duì)于任意的x∈[0,+∞),滿足f(x+2)=f(x),若當(dāng)x∈[0,2)時(shí),f(x)=|x2-x-1|,則函數(shù)y=f(x)-1在區(qū)間[-2,4]上的零點(diǎn)個(gè)數(shù)為7.

分析 如圖所示,y=g(x)=f(x)-1=$\left\{\begin{array}{l}{-(x-\frac{1}{2})^{2}+\frac{1}{4},0≤x≤\frac{1+\sqrt{5}}{2}}\\{(x-\frac{1}{2})^{2}-\frac{9}{4},\frac{1+\sqrt{5}}{2}<x<2}\end{array}\right.$,再利用f(x+2)=f(x),可得x∈[2,4]上的圖象.由函數(shù)f(x)是R上的偶函數(shù),可得g(x)也是R上的偶函數(shù),結(jié)合圖象即可得出零點(diǎn)個(gè)數(shù).

解答 解:如圖所示,y=g(x)=f(x)-1=$\left\{\begin{array}{l}{-(x-\frac{1}{2})^{2}+\frac{1}{4},0≤x≤\frac{1+\sqrt{5}}{2}}\\{(x-\frac{1}{2})^{2}-\frac{9}{4},\frac{1+\sqrt{5}}{2}<x<2}\end{array}\right.$,
再利用f(x+2)=f(x),可得x∈[2,4]上的圖象.
由函數(shù)f(x)是R上的偶函數(shù),可得g(x)也是R上的偶函數(shù),利用偶函數(shù)的性質(zhì)可得x∈[-2,0)上的圖象.
x∈[0,2)時(shí),g(0)=g(1)=0,
x∈[2,4]時(shí),g(2)=g(4)=g(0)=0,g(3)=g(1)=0.
x∈[-2,0)時(shí),g(-2)=g(2)=0,g(-1)=g(1)=0.
指數(shù)可得:函數(shù)g(x)共有7個(gè)零點(diǎn).
故答案為:7.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性與周期性、絕對(duì)值函數(shù)的圖象、二次函數(shù)的圖象與性質(zhì),考查了數(shù)形結(jié)合方法、推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{cosx}{sinx+\sqrt{2}}$(x∈[-$\frac{π}{2}$,$\frac{π}{2}$])的單調(diào)遞減區(qū)間是(-$\frac{π}{4}$,$\frac{π}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),則它到直線l的距離的最小值為(  )
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,四棱錐P-ABCD,DC∥AB,PB⊥AB,平面PAB⊥平面ABCD,AD=DC=CB=1,AB=BP=2
(1)求證:AD⊥平面PBD
(2)設(shè)平面PAD與平面CBP的交線為l,在圖上作出直線l,求二面角A-l-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在平行四邊形ABCD中,BC=2AB,∠ABC=60°,四邊形BEFD是矩形,且BE=BA,平面BEFD⊥平面ABCD.
(1)求證:AE⊥CF;
(2)求二面角A-EF-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,圓C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=2cosα}\\{y=2+2sinα}\end{array}\right.$(α為參數(shù)),M是圓C1上得動(dòng)點(diǎn),MN⊥x軸,垂足為N,P是線段MN的中點(diǎn),點(diǎn)P的軌跡為曲線C2
(1)求C2的參數(shù)方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=$\frac{π}{6}$與C1的異于極點(diǎn)的交點(diǎn)為A,與C2的異于極點(diǎn)的交點(diǎn)為B,求△C1AB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知不等式|x+2|-|x|≤a的解集不是空集,則實(shí)數(shù)a的取值范圍是[-2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有如下命題:
①x∈(0,+∞)時(shí),sinx<x恒成立;
②sin$\frac{3}{2}$cos$\frac{3}{2}$<0;
③sin2x=$\frac{ta{n}^{2}x}{1+ta{n}^{2}x}$;
④f(x)=|sinx|最小正周期是π,
其中正確命題的代號(hào)是( 。
A.①②③B.①③④C.②③④D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=${log_{\frac{1}{3}}}({x^2}-ax+3a)$在[1,+∞)上單調(diào)遞減,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,2]B.[2,+∞)C.$[-\frac{1}{2},2]$D.$(-\frac{1}{2},2]$

查看答案和解析>>

同步練習(xí)冊(cè)答案