18.在△ABC中,∠BAC=10°,∠ACB=30°,將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1,則在所有旋轉(zhuǎn)過程中,直線B1C與直線AC1所成角的取值范圍為[10°,50°].

分析 平移CB1到A處,由已知得∠B1CA=30°,∠B1AC=150°,0≤∠C1AC≤20°,由此能求出直線B1C與直線AC1所成角的取值范圍.

解答 解:∵在△ABC中,∠BAC=10°,∠ACB=30°,
將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1
如圖,平移CB1到A處,B1C繞AC旋轉(zhuǎn),
∴∠B1CA=30°,∠B1AC=150°,
AC1繞AB旋轉(zhuǎn),∴0°≤∠C1AC≤2∠CAB,
∴0≤∠C1AC≤20°,
設(shè)直線B1C與直線AC1所成角為α,
則∠B1AC-∠C1AC≤α≤∠B1AC+∠C1AC,
∵130°≤∠B1AC-∠C1AC≤150°,
150°≤∠B1AC+∠C1AC≤170°,
∴10°≤α≤50°或130°≤α≤170°(舍).
故答案為:[10°,50°].

點評 本題考查兩直線所成角的取值的求法,解題時要認(rèn)真審題,注意旋轉(zhuǎn)性質(zhì)的合理運用,是難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)的定義域為{x∈R|x≠1},對定義域中的任意的x,都有f(2-x)=f(x),且當(dāng)x<1時,f(x)=2x2-x,那么當(dāng)x>1時,f(x)的遞減區(qū)間是( 。
A.$[\frac{5}{4},+∞)$B.$(1,\frac{5}{4}]$C.$[\frac{7}{4},+∞)$D.$(1,\frac{7}{4})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在△ABC中,$\overrightarrow{BD}$=2$\overrightarrow{DC}$,$\overrightarrow{AB}$=m$\overrightarrow{AD}$+n$\overrightarrow{AC}$,則mn=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{{3^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}\right.$,若f(x0)>0,則x0的取值范圍是x0>1或x0≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的函數(shù)f(x)滿足f(x-1)的對稱軸為x=1,f(x+1)=$\frac{4}{f(x)}$(f(x)≠0),且在區(qū)間(2015,2016)上單調(diào)遞減.已知α,β是鈍角三角形中兩銳角,則f(sinα)和f(cosβ)的大小關(guān)系是( 。
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)
C.f(sinα)=f(cosβ)D.以上情況均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如果a>b>0,且a+b=1,那么在不等式①$\frac{a}<1$;②$\frac{1}<\frac{1}{a}$;③$\frac{1}+\frac{1}{a}<\frac{1}{ab}$;④$ab<\frac{1}{4}$中,一定成立的不等式的序號是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知F1,F(xiàn)2分別是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$(a,b>0)的左、右焦點,B點坐標(biāo)為(0,$\frac{2}$),直線F1B與雙曲線C的兩條漸近線分別交于P,Q兩點,且PQ的中點N的橫坐標(biāo)為$\frac{c}{4}$,則雙曲線C的離心率為$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(9,12),$\overrightarrow{c}$=(4,-3),若向量$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,則向量$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為( 。
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.在△ABC中,a,b,c分別是角A,B,C的對邊,且A=$\frac{2π}{3}$,b+2c=8,則當(dāng)△ABC的面積取得最大值時a的值為( 。
A.2$\sqrt{6}$B.2$\sqrt{7}$C.$\sqrt{14}$D.4

查看答案和解析>>

同步練習(xí)冊答案