A. | f(sinα)>f(cosβ) | B. | f(sinα)<f(cosβ) | ||
C. | f(sinα)=f(cosβ) | D. | 以上情況均有可能 |
分析 由平移圖象可得y=f(x)的對稱軸為x=0,由f(x)f(x+1)=4,將x換為x+1,可得f(x)的周期為2,由題意可得f(x)在(-1,0)上遞減,在(0,1)上遞增,由α,β是鈍角三角形中兩銳角,可得α+β<$\frac{π}{2}$,運(yùn)用誘導(dǎo)公式和正弦函數(shù)的單調(diào)性,即可判斷大小,得到結(jié)論.
解答 解:f(x-1)的對稱軸為x=1,
可得y=f(x)的對稱軸為x=0,
即有f(-x)=f(x),又f(x)f(x+1)=4,
可得f(x+1)f(x+2)=4,即為f(x+2)=f(x),
函數(shù)f(x)為最小正周期為2的偶函數(shù).
f(x)在區(qū)間(2015,2016)上單調(diào)遞減,
可得f(x)在(-1,0)上遞減,在(0,1)上遞增,
由α,β是鈍角三角形中兩銳角,可得α+β<$\frac{π}{2}$,
即有0<α<$\frac{π}{2}$-β<$\frac{π}{2}$,
則0<sinα<sin($\frac{π}{2}$-β)<1,即為0<sinα<cosβ<1,
則f(sinα)<f(cosβ).
故選:B.
點(diǎn)評 本題考查函數(shù)的對稱性和周期性的運(yùn)用,考查偶函數(shù)的單調(diào)性的運(yùn)用,同時考查三角形函數(shù)的誘導(dǎo)公式和正弦函數(shù)的單調(diào)性,考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{15}$ | B. | $\frac{8}{15}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{6}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com