1.已知函數(shù)g(x)=(x3-x)f(x)是偶函數(shù),則函數(shù)f(x)可能是( 。
A.1B.|x|C.x+$\frac{1}{x}$D.x2

分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.

解答 解:∵g(x)=(x3-x)f(x)是偶函數(shù),
∴g(-x)=g(x),
即-(x3-x)f(-x)=(x3-x)f(x),
則f(-x)=-f(x),
則函數(shù)f(x)是奇函數(shù),
則f(x)=x+$\frac{1}{x}$是奇函數(shù),滿足條件.
故選:C.

點(diǎn)評 本題主要考查函數(shù)奇偶性的判斷,利用函數(shù)奇偶性的定義是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將十進(jìn)制數(shù)69轉(zhuǎn)化為二進(jìn)制數(shù):69(10)1000101(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.函數(shù)y=f(x)為偶函數(shù),且對任意x1、x2∈R均有f(x1+x2)=f(x1)+f(x2)+2x1x2+1
(1)求f(0)、f(1)、f(2)的值:
(2)求y=f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)一個(gè)半球的半徑為R,則其內(nèi)接圓柱的最大側(cè)面積是πR2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=$\sqrt{4-{x}^{2}}$+$\frac{1}{\sqrt{sinx}}$的定義域是{x|0<x≤2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.命題p:已知f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函數(shù)F(x)=f(x)+x-a有且僅有兩個(gè)零點(diǎn);命題q:在x∈[1,2]內(nèi),不等式x2+2ax-2>0恒成立,若p且q為真,求參數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.根據(jù)下列條件求直線方程:
(1)已知直線l的傾斜角為60°,求與直線l平行且過點(diǎn)(-3,2)的直線方程;
(2)求過點(diǎn)A(-3,1)的直線中,與原點(diǎn)距離最遠(yuǎn)的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.函數(shù)y=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)函數(shù)f(x)的定義域?yàn)镈,如果對于任意的x1∈D,存在唯一的x2∈D,使$\frac{f({x}_{1})+f({x}_{2})}{2}$=c(c為常數(shù)),則稱函數(shù)f(x)在D上均值為c.下列五個(gè)函數(shù):①y=x;②y=|x|;③y=x2;④y=$\frac{1}{x}$;⑤y=x+$\frac{1}{x}$.則滿足在其定義域上均值為2的所有函數(shù)的序號是①.

查看答案和解析>>

同步練習(xí)冊答案