分析 (1)直接令x1=x2=0得:f(0)=-1;同樣x1=1,x2=-1得:f(1)=0;令x1=x2=1得:f(2)=3;
(2)直接根據(jù)f[x+(-x)]=f(x)+f(-x)+2x(-x)+1以及f(x)=f(-x),f(0)=-1即可求出f(x).
解答 解:(1)令x1=x2=0得f(0)=2f(0)+1,得f(0)=-1,
令x1=1,x2=-1得f(1-1)=2f(1)-1=f(0)=-1,得f(1)=0,
令x1=x2=1得f(2)=2f(1)+3=3.
(2)令x1=x,x2=-x,則有f(x-x)=f(x)+f(-x)-2x2+1=-1,
又∵f(x)為偶函數(shù),
∴f(x)=f(-x),代入上式可得:f(x)=x2-1.
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性與單調(diào)性的綜合.解決第一問的關(guān)鍵在于賦值法的應(yīng)用.一般在見到函數(shù)解析式不知道而要求具體的函數(shù)值時(shí),多用賦值法來解決
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,+∞) | B. | [-2,+∞) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-e) | B. | (-e,-$\frac{21}{8}$) | C. | (-$\frac{21}{8}$,-$\frac{13}{6}$) | D. | (-$\frac{13}{6}$,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | |x| | C. | x+$\frac{1}{x}$ | D. | x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com