分析 (1)利用橢圓的對(duì)稱軸為坐標(biāo)軸且焦點(diǎn)在x軸,離心率e=$\frac{1}{2}$,短軸長(zhǎng)為2$\sqrt{3}$,求出a,b,即可求橢圓的方程;
(2)求出直線方程,代入橢圓方程,求得交點(diǎn)的坐標(biāo),即可求得弦AB的長(zhǎng).
解答 解:(1)由題意可得e=$\frac{c}{a}$=$\frac{1}{2}$,2b=2$\sqrt{3}$,即b=$\sqrt{3}$
又a2-c2=b2=3,
解得a=2,c=1,
即有橢圓方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)由右焦點(diǎn)(1,0),可得直線方程為y=x-1,
聯(lián)立橢圓$\frac{x^2}{4}+\frac{y^2}{3}=1$,y=x-1得:7x2-8x-8=0,
所以${x_1}+{x_2}=\frac{8}{7},{x_1}{x_2}=-\frac{8}{7}$,
即有AB=$\sqrt{1+1}$•$\sqrt{\frac{64}{49}-(-\frac{32}{7})}$=$\frac{24}{7}$.
點(diǎn)評(píng) 本題考查橢圓的方程與性質(zhì),考查直線與橢圓相交時(shí)的弦長(zhǎng),解題的關(guān)鍵是確定交點(diǎn)的坐標(biāo),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 3 | C. | 6 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com