8.函數(shù)y=cos(2x+$\frac{π}{3}$)的圖象的一個對稱中心是(  )
A.($\frac{5π}{6}$,1)B.($\frac{π}{3}$,-1)C.($\frac{π}{12}$,0)D.($\frac{π}{24}$,0)

分析 根據(jù)余弦函數(shù)的對稱性進行求解即可.

解答 解:由2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$得x=$\frac{π}{12}$+$\frac{kπ}{2}$,
即函數(shù)的對稱中心為($\frac{π}{12}$+$\frac{kπ}{2}$,0),k∈Z,
當(dāng)k=0時,對稱中心為($\frac{π}{12}$,0),
故選:C.

點評 本題主要考查三角函數(shù)的對稱性的求解,根據(jù)余弦函數(shù)的對稱性是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知拋物線y2=ax(a≠0)的準(zhǔn)線與直線x-2=0的距離為5,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=sin($\frac{4k+1}{2}$π-$\frac{x}{2}$)-sin(-$\frac{x}{2}$),k∈Z,x∈R
(1)求f(x)在[0,π)上的單調(diào)增區(qū)間;
(2)若f(α)=$\frac{2\sqrt{10}}{5}$,α∈(0,$\frac{π}{2}$),求tan(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)求證:動直線(m2+2m+3)x+(1+m-m2)y+3m2+1=0(其中m∈R)恒過定點,并求出定點坐標(biāo).
(2)求經(jīng)過兩條直線2x+3y+1=0和x-3y+4=0的交點,并且垂直于直線3x+4y-7=0的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AB=AC=$\frac{1}{2}$AA1,∠BAC=90°,點D,E分別為棱BB1,A1C1的中點,求異面直線B1E、CD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知AB是拋物線y2=2px(p>0)的過焦點F的一條弦.設(shè)A(x1,y1),B(x2,y2),AB的中點為M(x0,y0).求證:(1)|AB|=2(x0+$\frac{p}{2}$);
(2)若AB的傾斜角為θ,|AB|=$\frac{2p}{si{n}^{2}θ}$;
(3)x1x2=$\frac{{p}^{2}}{4}$,y1y2=-p2
(4)$\frac{1}{|AF|}$+$\frac{1}{|BF|}$為定值$\frac{2}{p}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)全集U={1,2,3,4,5,6},集合A={1,2,3,5},集合B={2,3,4}.
(1)求A∪B;
(2)求∁UA∩∁UB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$mx2+nx,x∈R.
(1)當(dāng)m=1,n=-2時,求f(x)的單調(diào)區(qū)間;
(2)當(dāng)n=0,且m>0時.求f(x)在區(qū)間[-1,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.求f(x)=$\left\{\begin{array}{l}{900x-15000}&{(1≤x≤30)}\\{-10{x}^{2}+1200x-15000}&{(30<x<75)}\end{array}\right.$的最大值.

查看答案和解析>>

同步練習(xí)冊答案