15.已知過點(diǎn)M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為8,則直線l的方程為4x+3y+21=0或x=-3.

分析 求出圓x2+y2+4y-21=0的圓心、半徑,當(dāng)直線l的斜率不存在時(shí),直線方程為x=-3,成立;當(dāng)直線l的斜率存在時(shí),設(shè)直線l:y=k(x+3)-3,求出圓心(0,-2)到直線y=k(x+3)-3的距離,由過點(diǎn)M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為8,利用勾股定理能求出直線l的方程.

解答 解:圓x2+y2+4y-21=0的圓心為(0,-2),半徑r=$\frac{1}{2}\sqrt{16+84}$=5,
當(dāng)直線l的斜率不存在時(shí),直線方程為x=-3,
聯(lián)立$\left\{\begin{array}{l}{x=-3}\\{{x}^{2}+{y}^{2}+4y-21=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=-3}\\{y=2}\end{array}\right.$或$\left\{\begin{array}{l}{x=-3}\\{y=-6}\end{array}\right.$,
∴直線l:x=-3被圓x2+y2+4y-21=0所截得的弦長為8,成立;
當(dāng)直線l的斜率存在時(shí),設(shè)直線l:y=k(x+3)-3,
圓心(0,-2)到直線y=k(x+3)-3的距離d=$\frac{|0+2+3k-3|}{\sqrt{{k}^{2}+1}}$=$\frac{|3k-1|}{\sqrt{{k}^{2}+1}}$,
∵過點(diǎn)M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為8,
∴由勾股定理得:${r}^{2}=sgr7rsz^{2}+(\frac{8}{2})^{2}$,
即25=$\frac{(3k-1)^{2}}{{k}^{2}+1}$+16,解得k=-$\frac{4}{3}$,
∴直線l:$y=-\frac{4}{3}(x+3)-3$,整理,得:4x+3y+21=0.
綜上直線l的方程為:4x+3y+21=0或x=-3.
故答案為:4x+3y+21=0或x=-3.

點(diǎn)評 本題考查直線方程的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意圓的性質(zhì)、點(diǎn)到直線的距離公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.將邊長為a的正方形白鐵皮,在它的四角各剪去一個(gè)小正方形(剪去的四個(gè)小正方形全等)然后彎折成一只無蓋的盒子,問:剪去的小正方形邊長為多少時(shí),制成的盒子容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知集合A≠∅,B={1,2,3,4,5,6,7},若x∈A,必有x∈B,且8-x∈A成立,則集合A最多有15個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(diǎn)(1,$\frac{\sqrt{3}}{2}$),左焦點(diǎn)為F1(-$\sqrt{3}$,0).
(1)求橢圓C的方程;
(2)過點(diǎn)(m,0)作圓x2+y2=1的切線l交橢圓C于A,B兩點(diǎn),將|AB|表示為m的函數(shù),并求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+cosθ}\\{y=2+sinθ}\end{array}}\right.$(θ為參數(shù)),以坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為:sinθ-2cosθ=0,直線l與圓C相交于A,B兩點(diǎn),且|OA|<|OB|.
(1)求圓C的普通方程和直線l的直角坐標(biāo)方程;
(2)求$\frac{{|{OA}|}}{{|{AB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平面直角坐標(biāo)系xOy中,已知直線l:x+y+a=0與點(diǎn)A(0,2),若直線l上存在點(diǎn)M滿足|MA|2+|MO|2=10(O為坐標(biāo)原點(diǎn)),則實(shí)數(shù)a的取值范圍是( 。
A.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1]B.[-2$\sqrt{2}$-1,2$\sqrt{2}$-1)C.[-$\sqrt{5}$-1,$\sqrt{5}$-1]D.[-$\sqrt{5}$-1,$\sqrt{5}$-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知過點(diǎn)(2,4)的直線l被圓C:x2+y2-2x-4y-5=0截得的弦長為6,則直線l的方程為x-2=0或3x-4y+10=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知圓C:x2+y2=3,從點(diǎn)A(-2,0)觀察點(diǎn)B(2,a),要使視線不被圓C擋住,則a的取值范圍是( 。
A.(-∞,-$\frac{4\sqrt{3}}{3}$)∪($\frac{4\sqrt{3}}{3}$,+∞)B.(-∞,-2)∪(2,+∞)C.(-∞,2$\sqrt{3}$)∪(2$\sqrt{3}$,+∞)D.(-∞,-4$\sqrt{3}$)∪(4$\sqrt{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.定義max{a,b}=$\left\{\begin{array}{l}{a,a≥b}\\{b,a-b}\end{array}\right.$,若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{-1≤x≤1}\\{-1≤y≤1}\end{array}\right.$,則max{|2x+1|,|x-2y+5|}的最小值為2.

查看答案和解析>>

同步練習(xí)冊答案