11.2015年,一列CRH5型高速車組進(jìn)行300000千米直線運營考核,標(biāo)志中國高鐵車從“中國制造”到“中國創(chuàng)新”的飛躍,將300000用科學(xué)記數(shù)法表示為( 。
A.3×106B.3×105C.0.3×106D.30×104

分析 科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).

解答 解:將300000用科學(xué)記數(shù)法表示為:3×105
故選:B.

點評 此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.等差數(shù)列{an}各項均為正數(shù),其前n項和為Sn,a2S3=75且a1,a4,a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式an;
(2)若數(shù)列{an}為遞增數(shù)列,求證:$\frac{1}{3}$≤$\frac{1}{{S}_{1}}+\frac{1}{{S}_{2}}+…+\frac{1}{{S}_{n}}$$<\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,AB為圓O的直徑,E為AB的延長線上一點,過E作圓O的切線,切點為C,過A作直線EC的垂線,垂足為D.若AB=4,CE=2$\sqrt{3}$,則AD=( 。
A.3B.6C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某物體三視圖如下,則該物是(  )
A.中空的長方體,體積為72cm3B.中空的長方體,體積為66cm3
C.實心長方體,體積為72cm3D.實心圓柱體,體積為66cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.圓的半徑是6cm,則30°的圓心角與圓弧圍成的扇形面積是( 。
A.$\frac{π}{2}c{m^2}$B.$\frac{3π}{2}c{m^2}$C.πcm2D.3πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F,過圓x2+y2=$\frac{12}{7}$上一點($\frac{6}{7}$,$\frac{4\sqrt{3}}{7}$)作圓的切線,切線l恰好經(jīng)過橢圓的右頂點和上頂點,A為橢圓上異于長軸頂點的任意一點.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點P(4,0),直線AP與橢圓的另一個交點為B,直線BF與橢圓的另一個交點為C,設(shè)直線AP的斜率為k1,直線BF的斜率為k2,求$\overrightarrow{PA}$•$\overrightarrow{FC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.運行A=5,B=8,X=A,A=B,B=X+A程序后輸出A,B的結(jié)果是( 。
A.5,8B.8,5C.8,13D.5,13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b(a,b≠0),不得分的概率為$\frac{a+b}{2}$.若他投籃一次得分ξ的數(shù)學(xué)期望$Eξ>\frac{7}{4}$,則a的取值范圍是($\frac{5}{12}$,$\frac{2}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,平面區(qū)域W中的點的坐標(biāo)(x,y)滿足$\left\{\begin{array}{l}{-1≤x≤2}\\{0≤y≤2}\end{array}\right.$從區(qū)域W中隨機取點M(x,y).
(1)若x∈Z,y∈Z,求點M位于第一象限的概率.
(2)若x∈R,y∈R,求|OM|≤2的概率.

查看答案和解析>>

同步練習(xí)冊答案