15.已知函數(shù)f(x)=|2x-a|+a.
(1)若不等式f(x)<6的解集為(-1,3),求a的值;
(2)在(1)的條件下,若存在x0∈R,使f(x0)≤t-f(-x0),求t的取值范圍.

分析 (1)求得不等式f(x)<6的解集為a-3≤x≤3,再根據(jù)不等式f(x)<6的解集為(-1,3),可得a-3=-1,由此求得a的范圍;
(2)令g(x)=f(x)+f(-x)=|2x-2|+|2x+2|+4,求出g(x)的最小值,可得t的范圍.

解答 解:(1)∵函數(shù)f(x)=|2x-a|+a,
不等式f(x)<6的解集為(-1,3),
∴|2x-a|<6-a 的解集為(-1,3),
由|2x-a|<6-a,可得a-6<2x+a<6-a,求得a-3≤x≤3,
故有a-3=-1,a=2.
(2)在(1)的條件下,f(x)=|2x-2|+2,
令g(x)=f(x)+f(-x)=|2x-2|+|2x+2|+4=$\left\{\begin{array}{l}{4-4x,x≤-1}\\{8,-1<x<1}\\{4+4x,x≥1}\end{array}\right.$,
故g(x)的最小值為8,
故使f(x)≤t-f(-x)有解的實(shí)數(shù)t的范圍為[8,+∞).

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,分段函數(shù)的應(yīng)用,求函數(shù)的最小值,函數(shù)的能成立問(wèn)題,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在($\frac{1}{\root{3}{x}}$+2x$\sqrt{x}$)7的展開(kāi)式中,x5的系數(shù)為560.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,四棱錐P-ABCD的底面是矩形,側(cè)面PAD是邊長(zhǎng)為2的正三角形,且側(cè)面PAD⊥底面ABCD,E為側(cè)棱PD的中點(diǎn).
(1)求證:PB∥平面EAC;
(2)求證:AE⊥平面PCD;
(3)若直線AC與平面PCD所成的角為30°,求三棱錐D-AEC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知拋物線C:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,P是l上一點(diǎn),直線PF與拋物線C相交于A、B兩點(diǎn),若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,則|AB|=( 。
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間[0,+∞)上是增函數(shù),若$\frac{{|f(lnx)-f(ln\frac{1}{x})|}}{2}<f(1)$,則f(x)的取值范圍是( 。
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.(Ⅰ)已知非零常數(shù)a、b滿足$a+b=\frac{1}{a}+\frac{1}$,求不等式|-2x+1|≥ab的解集;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,已知拋物線C以坐標(biāo)原點(diǎn)O為頂點(diǎn),焦點(diǎn)F在x軸的正半軸上,且|OF|=$\frac{1}{2}$.
(1)求拋物線C的方程;
(2)過(guò)定點(diǎn)N(x0,y0)的動(dòng)直線l與拋物線C相交于A、B兩點(diǎn)(A、B異于點(diǎn)O),設(shè)OA、OB的傾斜角分別為α、β,若α+β(α+β∈(0,π))為定值,求x0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=$\frac{1}{2}$(x+$\frac{1}{x}$),g(x)=$\frac{1}{2}$(x-$\frac{1}{x}$).
(1)求函數(shù)h(x)=f(x)+2g(x)的零點(diǎn);
(2)求函數(shù)F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某位同學(xué)進(jìn)行寒假社會(huì)實(shí)踐活動(dòng),為了對(duì)白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進(jìn)行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(℃)與該奶茶店的這種飲料銷量y(杯)得到如下數(shù)據(jù)
日期11日12日13日14日15日
平均氣溫x(℃)91012118
銷量y(杯)2325302621
(1)若先從這5組數(shù)據(jù)中抽取2組,列出所有可能的結(jié)果并求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請(qǐng)根據(jù)所給的5組數(shù)據(jù)求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,并根據(jù)線性回歸方程預(yù)測(cè)當(dāng)氣象臺(tái)預(yù)報(bào)1月16日的白天氣溫為7℃時(shí)奶茶店這種飲料的銷量(結(jié)果四舍五入).
附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中$\left\{\begin{array}{l}{\widehat=\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})=\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{xy}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\end{array}\right.$,其中$\overline{x}$,$\overline{y}$為樣本平均值.

查看答案和解析>>

同步練習(xí)冊(cè)答案