5.直線l把圓x2+y2-2y=0的面積平分,則它被這個圓截得的弦長為( 。
A.4B.$\sqrt{2}$C.2D.1

分析 利用圓的簡單性質(zhì)求解即可.

解答 解:圓x2+y2-2y=0的半徑為:1,
直線l把圓x2+y2-2y=0的面積平分,則它被這個圓截得的弦長為圓的直徑:2.
故選:C.

點評 本題考查直線與圓的位置關(guān)系的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合A={x|x2-3x-4>0},集合B={x||2-x|≤4},求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.三棱錐A-BCD的外接球半徑為$\sqrt{13}$,AD=2,且滿足$\overrightarrow{AB}•\overrightarrow{AC}=\overrightarrow{AB}•\overrightarrow{AD}$=$\overrightarrow{AC}•\overrightarrow{AD}=0$,則三棱錐A-BCD體積的最大值為( 。
A.2B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x-1)的定義域是[-1,3],則f(x)=f(2x)+lg(1-x)的定義域為(  )
A.[-1,1]B.[-1,1)C.[-4,1)D.[-4,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)0<a<1,集合A={x∈R|x>0},B={x∈R|2x2-3(1+a)x+6a>0},D=A∩B,求集合D(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<π)的部分圖象如圖所示,f($\frac{π}{2}$)=-$\frac{2}{3}$,f($\frac{7π}{12}$)=0,f($\frac{11π}{12}$)=0,則A=( 。
A.1B.xC.0D.$\frac{2}{3}$$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx+$\frac{a}{x}$-1,a∈R.
(1)若函數(shù)f(x)的最小值為0,求a的值.
(2)證明:ex+(lnx-1)sinx>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知復(fù)數(shù)z=(2m2-3m-2)+(m2-3m+2)i.
(Ⅰ)當(dāng)實數(shù)m取什么值時,復(fù)數(shù)z是純虛數(shù);
(Ⅱ)當(dāng)m=0時,化簡$\frac{{z}^{2}}{z+5+2i}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-ax+a的零點為x0,曲線f(x)在點(x0,f(x0))處的切線為y=g(x).
(1)證明:f(x)≤g(x);
(2)若關(guān)于x的方程f(x)=a有兩個不等實根m,n,p為f(x)較大的零點,證明:|m-n|<p-$\frac{1}{1-a}$.

查看答案和解析>>

同步練習(xí)冊答案