6.已知點(diǎn)P(1,m)是頂點(diǎn)在坐標(biāo)原點(diǎn)的拋物線上一點(diǎn),若點(diǎn)P到該拋物線焦點(diǎn)F的距離為2,則該拋物線方程為y2=4x或x2=2(2±$\sqrt{3}$)y.

分析 討論若焦點(diǎn)在x軸的正半軸上,設(shè)拋物線的方程為y2=2px,若焦點(diǎn)在y軸的正半軸上,可設(shè)x2=2ty(p,t>0),求出準(zhǔn)線方程,由拋物線的定義,解方程即可得到所求方程.

解答 解:若焦點(diǎn)在x軸的正半軸上,設(shè)拋物線的方程為y2=2px,(p>0),
準(zhǔn)線的方程為x=-$\frac{p}{2}$,
由拋物線的定義可得2=1+$\frac{p}{2}$,解得p=2,
可得拋物線的方程為y2=4x;
若焦點(diǎn)在y軸的正半軸上,可設(shè)x2=2ty(t>0),
準(zhǔn)線的方程為y=-$\frac{t}{2}$,
由拋物線的定義可得,2=m+$\frac{t}{2}$,且1=2tm,
解得t=2$±\sqrt{3}$,
可得拋物線的方程為x2=2(2±$\sqrt{3}$)y.
故答案為:y2=4x或x2=2(2±$\sqrt{3}$)y.

點(diǎn)評(píng) 本題考查拋物線的方程的求法,注意運(yùn)用待定系數(shù)法,考查解方程的運(yùn)算求解能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(文)已知等差數(shù)列{an}的首項(xiàng)為p,公差為d(d>0).對(duì)于不同的自然數(shù)n,直線x=an與x軸和指數(shù)函數(shù)f(x)=($\frac{1}{2}$)x的圖象分別交于點(diǎn)An與Bn(如圖所示),記Bn的坐標(biāo)為(an,bn),直角梯形A1A2B2B1、A2A3B3B2的面積分別為s1和s2,一般地記直角梯形AnAn+1Bn+1Bn的面積為sn
(1)求證:數(shù)列{sn}是公比絕對(duì)值小于1的等比數(shù)列;
(2)設(shè)數(shù)列{an}的首項(xiàng)為p=-1,公差d=1,是否存在這樣的正整數(shù)n,構(gòu)成以bn,bn+1,bn+2為邊長(zhǎng)的三角形?并請(qǐng)說明理由;
(3))設(shè){an}的公差d=1,是否存在這樣的實(shí)數(shù)p使得(1)中無窮等比數(shù)列{sn}各項(xiàng)的和S>2010?如果存在,給出一個(gè)符合條件的p值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=ax-lnx;g(x)=x3-x2-8x-1
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意${x_1}∈[1{,^{\;}}e]$,存在${x_2}∈[0{,^{\;}}3]$使得f(x1)≤g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在△ABC中,∠B=30°,AC=2$\sqrt{5}$,D是邊AB上一點(diǎn).
(1)求△ABC的面積的最大值;
(2)若CD=2,△ACD的面積為4,∠ACD為銳角,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若x,y滿足log2[4cos2(xy)+$\frac{1}{4co{s}^{2}(xy)}$]=-y2+4y-3,則ycos4x的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.E,F(xiàn)是等腰直角△ABC斜邊AB上的三等分點(diǎn),則tan∠ECF=$\frac{3}{4}$,cos∠BCF=$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過雙曲線x2-$\frac{{y}^{2}}{2}$=1的右焦點(diǎn)作直線交雙曲線于A、B兩點(diǎn),若|AB|=a則這樣的直線可以做出幾條?
①|(zhì)AB|=1,這樣的直線可以做出0條;
②|AB|=2,這樣的直線可以做出1條;
③|AB|=3,這樣的直線可以做出2條;
④|AB|=4,這樣的直線可以做出3條;
⑤|AB|=5,這樣的直線可以做出4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.定義點(diǎn)P(x0,y0)到直線l:ax+by+c=0(a2+b2≠0)的有向距離為d=$\frac{{a{x_0}+b{y_0}+c}}{{\sqrt{{a^2}+{b^2}}}}$.已知點(diǎn)P1、P2到直線l的有向距離分別是d1、d2.以下命題正確的是( 。
A.若d1-d2=0,則直線P1P2與直線l平行
B.若d1+d2=0,則直線P1P2與直線l平行
C.若d1+d2=0,則直線P1P2與直線l垂直
D.若d1•d2<0,則直線P1P2與直線l相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題正確的是(  )
A.命題“p或q”為真命題,則命題“p”和命題“q”均為真命題
B.“am2<bm2”是”a<b”的必要不充分條件
C.命題p:存在x0∈R,使得x02+x0+1<0,則¬p:任意x∉R,都有x2+x+1≥0
D.命題“若x2<1,則-1<x<1”的逆否命題是若x≥1或x≤-1,則x2≥1

查看答案和解析>>

同步練習(xí)冊(cè)答案