【題目】已知雙曲線C1-=1

1)若點M3,t)在雙曲線C1上,求M點到雙曲線C1右焦點的距離;

2)求與雙曲線C1有共同漸近線,且過點(-32)的雙曲線C2的標準方程.

【答案】142x2-=1

【解析】

1)由題得t2=12-1=15,再利用兩點間的距離公式求得M點到雙曲線C1右焦點的距離;(2)設雙曲線C2的方程為-=mm≠0,m≠1),代入點(-3,2),即得m的值和雙曲線的標準方程.

解:(1)雙曲線C1-=1的右焦點為(4,0),

M3t)在雙曲線C1上,可得t2=12-1=15,

M點到雙曲線C1右焦點的距離為=4;

2)與雙曲線C1有共同漸近線,可設雙曲線C2的方程為-=mm≠0m≠1),

代入點(-3,2),可得m=-=,

則雙曲線C2的標準方程為x2-=1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】求解下列各題.

(1)已知,且為第一象限角,求,;

(2)已知,且為第三象限角,求,;

(3)已知,且為第四象限角,求,;

(4)已知,且為第二象限角,求,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,的直角邊OAx軸上,頂點B的坐標為,直線CDAB于點,交x軸于點.

(1)求直線CD的方程;

(2)動點Px軸上從點出發(fā),以每秒1個單位的速度向x軸正方向運動,過點P作直線l垂直于x軸,設運動時間為t.

①點P在運動過程中,是否存在某個位置,使得?若存在,請求出點P的坐標;若不存在,請說明理由;

②請?zhí)剿鳟?/span>t為何值時,在直線l上存在點M,在直線CD上存在點Q,使得以OB為一邊,O,B,M,Q為頂點的四邊形為菱形,并求出此時t的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標中xOy,圓C1x2+y2=8,圓C2x2+y2=18,點M1,0),動點A、B分別在圓C1和圓C2上,滿足,則的取值范圍是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當時,(i)求曲線在點處的切線方程;

(ii)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,求證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的公差d0,則下列四個命題:

①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;

③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.

其中正確命題的個數(shù)為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知xy滿足約束條件.

1)求目標函數(shù)的最值;

2)當目標函數(shù)在該約束條件下取得最大值5時,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓 的離心率為,直線ly=2上的點和橢圓上的點的距離的最小值為1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 已知橢圓的上頂點為A,點B,C上的不同于A的兩點,且點B,C關于原點對稱,直線ABAC分別交直線l于點E,F.記直線的斜率分別為

① 求證: 為定值;

② 求△CEF的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足:m為正整數(shù)),,若,則m所有可能的取值為________

查看答案和解析>>

同步練習冊答案