3.直線y=x+m與橢圓$\frac{{x}^{2}}{2}$+y2=1相切,則m的值為$±\sqrt{3}$.

分析 直線與橢圓方程聯(lián)立化為3x2+4mx+2m2-2=0,利用直線與橢圓相切可得:△=0,解出即可.

解答 解:聯(lián)立$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$,化為3x2+4mx+2m2-2=0,
∵直線與橢圓相切可得:△=16m2-12(2m2-2)=0,
解得:$m=±\sqrt{3}$.
故答案為:±$\sqrt{3}$.

點評 本題考查了直線與橢圓相切的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲船在A處遇險,在甲船正西南10海里B處的乙船收到甲船的報警后,測得甲船是沿著方位角105°的方向,以每小時9海里的速度向某島靠近.如果乙船要在40分鐘內(nèi)追上甲船,則乙船應(yīng)以多少速度并沿什么方向航行?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在角①$\frac{π}{4}$;②-$\frac{5}{4}$π;③$\frac{19}{4}$π:④-$\frac{3}{4}$π中.終邊相同的是②③(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x)滿足f(x+3)=f(x),且f(x)是奇函數(shù),若f(1)=$\sqrt{2}$,則f(2006)=-$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若平面上四點A,B,C,D滿足任意三點不共線,且4$\overrightarrow{AC}$+2$\overrightarrow{AB}$=$\overrightarrow{AD}$.則$\frac{{S}_{△ABD}}{{S}_{△ABC}}$=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=$\frac{2}{3}a{x}^{3}-a{x}^{2}+2x+10$是R上的增函數(shù),則實數(shù)a的取值范圍的是[0,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)x+x-1=3,求下列各式的值,
(1)x2+x-2
(2)x3+x-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.a(chǎn),b∈R+,證明不等式:$\sqrt{ab}$≤$\frac{a+b}{2}$.
引申:(1)a,b,c∈R+,求證:
①(a+1)(b+1)(b+c)(c+a)≥16abc;
②$\frac{b+c-a}{a}$+$\frac{c+a-b}$+$\frac{a+b-c}{c}$≥3;
(2)a,b,c∈R+,a+b+c=1,求證:($\frac{1}{a}$-1)($\frac{1}$-1)($\frac{1}{c}$-1)≥8;
(3)a,b∈R+,求證:$\frac{a}{\sqrt}$+$\frac{\sqrt{a}}$≥$\sqrt{a}$+$\sqrt$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)x,y滿足約束條件$\left\{{\begin{array}{l}{x+y-7≤0}\\{x-3y+1≤0}\\{3x-y-5≥0}\end{array}}\right.$,則$\frac{y+1}{x-4}$的取值范圍是(-∞,-1]∪[3,+∞).

查看答案和解析>>

同步練習(xí)冊答案