4.已知向量$\overrightarrow b,\overrightarrow c$在正方形網(wǎng)格中的位置如圖所示,則$\overrightarrow b+\overrightarrow c$=(2,-2)

分析 根據(jù)圖形,求出向量$\overrightarrow$、$\overrightarrow{c}$的坐標(biāo)表示,再求出$\overrightarrow b+\overrightarrow c$的坐標(biāo)表示.

解答 解:根據(jù)題意,向量$\overrightarrow$=(4-1,3-2)=(3,1),
$\overrightarrow{c}$=(3-4,0-3)=(-1,-3),
∴$\overrightarrow b+\overrightarrow c$=(3-1,1-3)=(2,-2).
故答案為(2,-2).

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與運(yùn)算問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.四棱錐E-ABCD中,AD∥BC,AD=AE=2BC=2AB=2,AB⊥AD,平面EAD⊥平面ABCD,點(diǎn)F為DE的中點(diǎn).
(1)求證:CF∥平面EAB;
(2)若CF⊥AD,求二面角D-CF-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)i為虛數(shù)單位,a,b∈R,下列命題中:
①(a+1)i是純虛數(shù);
②若a>b,則a+i>b+i;
③若(a2-1)+(a2+3a+2)i是純虛數(shù),則實(shí)數(shù)a=±1;
④2i2>3i2.其中,真命題的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖直四棱柱ABCD-A1B1C1D1,底面ABCD是直角梯形,AB∥DC,∠BAD=90°,AA1=AB=2CD=4,AD=2,E、F、G分別是側(cè)棱BB1、C1C、DD1上的點(diǎn),BE=2,DG=3.
(Ⅰ)若CF=2,求證:A1,E,F(xiàn),G四點(diǎn)共面;
(Ⅱ)若面EFG與面A1ADD1所成二面角(銳角)的余弦值為$\frac{\sqrt{6}}{6}$,求CF長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2FE=1,點(diǎn)P是棱DF的中點(diǎn).
(1)求證:AD⊥BF;
(2)求點(diǎn)B到面PCD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=\frac{3}{2}sinωx+\sqrt{3}{cos^2}ω\frac{x}{2}+\frac{{\sqrt{3}}}{2}({0<ω<2})$
(1)若函數(shù)f(x)圖象的一條對(duì)稱軸是直線$x=\frac{π}{4}$,求函數(shù)f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足$f({\frac{A}{ω}})=2\sqrt{3}$,a=12,$C=\frac{π}{4}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.定義在[-2,2]上的偶函數(shù)f(x),當(dāng)x≥0時(shí),f(x)單調(diào)遞減,若f(1-m)<f(m)成立,求m的取值范圍[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列判斷錯(cuò)誤的是( 。
A.“am2<bm2”是“a<b”的充分不必要條件
B.命題“x∈R,x3-x2-1≤0”的否定是“?x0∈R,x${\;}_{0}^{3}$-x${\;}_{0}^{2}$-1>0”
C.若p,q均為假命題,則p∧q為假命題
D.函數(shù)y=1是冪函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列命題中為真命題的是( 。
A.若x≠0,則x+$\frac{1}{x}$≥2
B.若直線x-ay=0與直線x+ay=0互相垂直,則a=1
C.命題“若x2=1,則x=1或x=-1”的逆否命題為“若x≠1且x≠-1,則x2≠1”
D.一個(gè)命題的否命題為真,則它的逆否命題一定為真

查看答案和解析>>

同步練習(xí)冊(cè)答案