分析 (1)由已知推導出AD⊥AB,利用面面垂直性質定理能證明AD⊥BF.
(2)取AD的中點G,連結PG,由VP-ACD=VA-PCD,能求出點B到面PCD的距離.
解答 證明:(1)∵四邊形ABCD為矩形,∴AD⊥AB,
∵平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,
AD?平面ABCD,又BF?平面ABEF,
∴AD⊥BF.
(2)取AD的中點G,連結PG,
∵∠BAF=90°,∴AF⊥AB,
又平面ABEF⊥平面ABCD,平面ABEF∩平面ABCD=AB,AF?平面ABEF,
∴AF⊥平面ABCD,
∵P、G分別為DF、AD的中點,
∴PG∥AF,∴PG⊥平面ABCD,
∵VP-ACD=VA-PCD,
∴$\frac{1}{3}{S}_{△ACD}•PG=\frac{1}{3}{S}_{△PCD}•wh2q9je_{A-PCD}$,
∴dA-PCD=$\frac{{S}_{△ACD}•PG}{{S}_{△PCD}}$=$\frac{\frac{1}{2}×2×1×\frac{1}{2}}{\frac{1}{2}×1×\frac{\sqrt{5}}{2}}$=$\frac{2\sqrt{5}}{5}$,
∵AB∥面PCD,故dB-PCD=dA-PCD=$\frac{2\sqrt{5}}{5}$,
∴點B到面PCD的距離為$\frac{2\sqrt{5}}{5}$.
點評 本題考查異面直線垂直的證明,考查點到平面的距離的求法,是中檔題,解題時要認真審題,注意等體積法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-3)∪(-3,0] | B. | (-∞,-3)∪(-3,1] | C. | (-3,0] | D. | (-3,1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{2}{5}$或-2 | C. | $\frac{3}{5}$ | D. | $\frac{3}{5}$或-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com