15.求下列函數(shù)的定義域:
(1)y=$\sqrt{sinx}$;
(2)y=2+$\frac{1}{cosx}$.

分析 (1)由sinx≥0,解得2kπ≤x≤2kπ+π,k∈Z.即可得出函數(shù)y=$\sqrt{sinx}$的定義域.
(2)由cosx≠0,解得x≠$kπ+\frac{π}{2}$,k∈Z.即可得出函數(shù)y=2+$\frac{1}{cosx}$的定義域.

解答 解:(1)由sinx≥0,解得2kπ≤x≤2kπ+π,k∈Z.
∴函數(shù)y=$\sqrt{sinx}$的定義域為{x|2kπ≤x≤2kπ+π,k∈Z}.
(2)由cosx≠0,解得x≠$kπ+\frac{π}{2}$,k∈Z.
∴函數(shù)y=2+$\frac{1}{cosx}$的定義域為:{x|x≠$kπ+\frac{π}{2}$,k∈Z}.

點評 本題考查了函數(shù)的定義域、三角函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

5.若sinα=2cosα,則$\frac{sinα-cosα}{sinα+cosα}$的值為( 。
A.1B.-$\frac{1}{3}$C.$\frac{1}{3}$D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知三棱錐O-ABC,OA,OB,OC兩兩垂直,且OA=OB=$\sqrt{2}$,OC=1,P是△ABC上任意一點,設OP與平面ABC所成角為x,OP=y,則y關(guān)于x的函數(shù)關(guān)系圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|2x-1|+|2x+3|,g(x)=f(x)-|2x+3|-|x+1|.
(Ⅰ)若對任意的實數(shù)x,關(guān)于x的不等式f(x)≥a恒成立,求實數(shù)a的取值范圍;
(Ⅱ)若存在x<-1,使g(x)≤g(m)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.正數(shù)數(shù)列{an}中,a1=3,an+1=ban+1(b是常數(shù),n=1,2,3,…),且a1-1,a2+1,a3-1成等差數(shù)列.
(1)求b的值;
(2)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.某人循一圓形跑道作等速跑步,每分鐘經(jīng)過的弧所對的圓心角是2$\frac{6}{7}$弧度,若此人于14分40秒內(nèi)共跑了5280公尺,試求跑道的半徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.函數(shù)y=$\frac{sinx+1}{cosx+3}$的值域為[0,$\frac{3}{4}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知sin($\frac{π}{3}$+a)=$\frac{12}{13}$,a∈($\frac{π}{6}$,$\frac{2π}{3}$),則cosα的值為  ( 。
A.$\frac{12\sqrt{3}-5}{13}$B.$\frac{12\sqrt{3}-5}{26}$C.$\frac{12\sqrt{3}+5}{13}$D.$\frac{12\sqrt{3}+5}{26}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知i是虛數(shù)單位,若復數(shù)(a+i)(2-i)是純虛數(shù),則實數(shù)a等于( 。
A.2B.$\frac{1}{2}$C.-$\frac{1}{2}$D.-2

查看答案和解析>>

同步練習冊答案