9.已知f(x)=$\left\{\begin{array}{l}{lnx,1≤x≤3}\\{-2lnx,\frac{1}{3}≤x≤1}\end{array}\right.$,g(x)=f(x)-ax有三個(gè)不同零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[$\frac{ln3}{3}$,$\frac{1}{2e}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

分析 作函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,1≤x≤3}\\{-2lnx,\frac{1}{3}≤x≤1}\end{array}\right.$與y=ax的圖象,結(jié)合圖象求解.

解答 解:作函數(shù)f(x)=$\left\{\begin{array}{l}{lnx,1≤x≤3}\\{-2lnx,\frac{1}{3}≤x≤1}\end{array}\right.$與直線y=ax的圖象如下,

結(jié)合圖象可知,
當(dāng)直線y=ax與f(x)=lnx相切時(shí),$\frac{lnx}{x}$=$\frac{1}{x}$;
解得,x=e;此時(shí)a=$\frac{1}{e}$;
當(dāng)直線y=ax過點(diǎn)(3,ln3)時(shí),
a=$\frac{ln3}{3}$;
故實(shí)數(shù)a的取值范圍是[$\frac{ln3}{3}$,$\frac{1}{e}$);
故選:A.

點(diǎn)評 本題考查了函數(shù)的零點(diǎn)與函數(shù)的圖象的交點(diǎn)的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.射擊比賽每人射2次,約定全部不中得0分,只中一彈得10分,中兩彈得15分,某人每次射擊的命中率均為$\frac{4}{5}$,則他得分的數(shù)學(xué)期望是12.8分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)a滿足|a|<2,則事件“點(diǎn)M(1,1)與點(diǎn)N(2,0)分別位于直線l:ax-2y+1=0兩側(cè)”的概率為( 。
A.$\frac{1}{8}$B.$\frac{3}{8}$C.$\frac{5}{8}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知隨機(jī)變量ξ的分布列如表,則ξ的標(biāo)準(zhǔn)差等于$\sqrt{3.56}$.
ξ135
p0.40.1x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知圓心為C的圓經(jīng)過A(1,1)和B(2,-2),且圓心C在直線l:x-y+1=0上
(1)求圓心為C的圓的標(biāo)準(zhǔn)方程;
(2)線段PQ的端點(diǎn)P的坐標(biāo)是(5,0),端點(diǎn)Q在圓C上運(yùn)動(dòng),求線段PQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對于實(shí)數(shù)a,b,定義運(yùn)算“?”:a?b=$\left\{\begin{array}{l}{a,a≤b}\\{b,a>b}\end{array}\right.$,設(shè)f(x)=(x2-2)?(2-x2),x∈R.若函數(shù)y=f(x)-m的圖象與x軸有四個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是(-2,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)g(x)=x-1,已知f(x)=$\left\{\begin{array}{l}{2g({x}^{2})-g(x-1),g(2x)≤g(x)}\\{g(x)-g({x}^{2}),g(2x)>g(x)}\end{array}\right.$,若關(guān)于x的方程f(x)=m恰有三個(gè)互不相等的實(shí)根x1,x2,x3,則x12+x22+x32的取值范圍是($\frac{6-\sqrt{3}}{8}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知底面為正三角形的三棱柱ABC-A1B1C1的側(cè)棱垂直于底面,底面面積為$4\sqrt{3}{m^2}$,一條側(cè)棱長為3m,則它的側(cè)面積為36m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)函數(shù)f(x)=-$\frac{1}{3}{x^3}+{x^2}+({m^2}-1)$x(x∈R),其中m>0.
(1)當(dāng)m=$\frac{3}{2}$,求函數(shù)f(x)在區(qū)間[-2,2]上的最大值;
(2)已知函數(shù)f(x)有三個(gè)互不相同的零點(diǎn)0,x1,x2,且x1<x2,若對任意的x∈[x1,x2],f(x)>f(1)恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案