分析 圓的方程配方化為標(biāo)準(zhǔn)方程后,表示出圓心坐標(biāo)和半徑的平方,根據(jù)二次函數(shù)求最值的方法求出半徑的最大值,即可得出結(jié)論.
解答 解:將方程配方,得(x+$\frac{1}{2}$)2+(y+$\frac{m-1}{2}$)2=$\frac{-(m+1)^{2}+3}{4}$.
∴r2max=$\frac{3}{4}$,此時m=-1.
∴圓的標(biāo)準(zhǔn)方程是(x+$\frac{1}{2}$)2+(y-1)2=$\frac{3}{4}$.
故答案為:(x+$\frac{1}{2}$)2+(y-1)2=$\frac{3}{4}$.
點(diǎn)評 此題考查學(xué)生會將圓的方程化為圓的標(biāo)準(zhǔn)方程,掌握二次函數(shù)求最大值的方法是關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-6,2] | B. | [-6,-2] | C. | [-2,6] | D. | $[{2-\sqrt{7}{,_{\;}}2+\sqrt{7}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3萬件 | B. | 1萬件 | C. | 2萬件 | D. | 7萬件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com