20.函數(shù)y=a(x-2)+$\frac{\sqrt{2}}{2}$的 圖象恒過(guò)定點(diǎn)P,P在冪函數(shù)f(x)的圖象上,則f(9)等于( 。
A.$\frac{1}{3}$B.$\sqrt{3}$C.3D.9

分析 求出直線恒過(guò)的定點(diǎn),然后求出冪函數(shù)的解析式,即可求解函數(shù)值.

解答 解:函數(shù)y=a(x-2)+$\frac{\sqrt{2}}{2}$的 圖象恒過(guò)定點(diǎn)P(2,$\frac{\sqrt{2}}{2}$),
P在冪函數(shù)f(x)的圖象上,
可得$\frac{\sqrt{2}}{2}={2}^{a}$,解得a=-$\frac{1}{2}$.
冪函數(shù)f(x)=${x}^{-\frac{1}{2}}$,
f(9)=${9}^{-\frac{1}{2}}$=$\frac{1}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查直線系與函數(shù)的關(guān)系,冪函數(shù)的解析式以及函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=alnx+$\frac{1}{2}$ax2+bx(a≠0).
(I)若函數(shù)f(x)的圖象在x=1處的切線方程為y=3x-$\frac{3}{2}$b,求a,b的值;
(Ⅱ)若當(dāng)a=2時(shí),函數(shù)f(x)在R上是增函數(shù),求實(shí)數(shù)b的取值范圍;
(Ⅲ)設(shè)函數(shù)g(x)=1nx的圖象C1與函數(shù)h(x)=f(x)-ag(x)的圖象C2交于點(diǎn)P、Q,過(guò)線段PQ的中點(diǎn)R作x軸的垂線分別交C1、C2于點(diǎn)M、N,問(wèn)是否存在點(diǎn)R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)函數(shù)f(z)=1-z,z1=1+2i,z2=7-6i,求f(z1-z2)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.非零向量($\overrightarrow{a}$+3$\overrightarrow$)⊥(2$\overrightarrow{a}$-$\overrightarrow$),($\overrightarrow{a}$-2$\overrightarrow$)⊥(2$\overrightarrow{a}$+$\overrightarrow$),求向量$\overrightarrow{a}$與$\overrightarrow$夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.奇函數(shù)y=f(x)在區(qū)間(-∞,0)上是減函數(shù),下列大小關(guān)系正確的是( 。
A.f(-3)<f(-2)B.f(3)<f(2)C.f(-3)<f(2)D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知sin($\frac{π}{2}$-θ)-cos(π+θ)=3sin(2π-θ),則sinθcosθ+cos2θ等于( 。
A.$\frac{3}{13}$B.$\frac{2}{5}$C.-$\frac{3}{5}$D.-$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知$\overrightarrow{m}$=(2cosA,1),$\overrightarrow{n}$=(1,(sin(A+$\frac{π}{6}$)),且$\overrightarrow{m}$∥$\overrightarrow{n}$,在△ABC中,內(nèi)角A,B,C對(duì)邊分別為a,b,c,a=2$\sqrt{3}$,c=4
(Ⅰ)求A值;
(Ⅱ)求b和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.化簡(jiǎn):3(sin4α+cos4α)-2(sin4α-sin2αcos2α+cos4α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知i是虛數(shù)單位,則復(fù)數(shù)$\frac{1-3i}{1+i}$=( 。
A.-1-2iB.-1+2iC.2+iD.2-i

查看答案和解析>>

同步練習(xí)冊(cè)答案