19.設(shè){an}是無窮數(shù)列,令a′k=$\frac{{a}_{k}+{a}_{k+1}}{2}$,(k=1,2,…),則稱{a′k}是{ak}的均值數(shù)列.仿此可定義,{a″k}是{a′k}的均值數(shù)列,且{a″k}是{a′k}的第二級均值數(shù)列.若{ak}的各級均值數(shù)列都是整數(shù)列,則稱{ak}是“好”數(shù)列,求證:若{ak}是“好”數(shù)列,則{ak2}也是“好”數(shù)列.

分析 由新定義可得,{ak}的各級均值數(shù)列都是整數(shù)列,即有{ak}均為奇數(shù)構(gòu)成的數(shù)列或均為偶數(shù)構(gòu)成的數(shù)列,根據(jù)奇數(shù)的平方必為奇數(shù),偶數(shù)的平方必為偶數(shù),即可得證.

解答 證明:若{ak}是“好”數(shù)列,
由新定義可得,{ak}的各級均值數(shù)列都是整數(shù)列,
即有{ak}均為奇數(shù)構(gòu)成的數(shù)列或均為偶數(shù)構(gòu)成的數(shù)列,
根據(jù)奇數(shù)的平方必為奇數(shù),偶數(shù)的平方必為偶數(shù),
可得{ak2}的各級均值數(shù)列都是整數(shù)列,
由新定義可得{ak2}也是“好”數(shù)列.

點(diǎn)評 本題考查新定義的理解和運(yùn)用,注意運(yùn)用奇數(shù)和偶數(shù)的性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.有一塊邊長為a的正方形鐵板,現(xiàn)從鐵板的四個(gè)角各截去一個(gè)相同的小正方形,做成一個(gè)長方體形的無蓋容器,為使其容積最大,截下的小正方形邊長應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)$\overrightarrow{a}$=(x,3),$\overrightarrow$=(2,-1),根據(jù)下列條件求x的取值范圍.
(1)$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角;
(2)$\overrightarrow{a}$與$\overrightarrow$的夾角為直角;
(3)$\overrightarrow{a}$與$\overrightarrow$的夾角為鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在△ABC中,點(diǎn)M是BC中點(diǎn),點(diǎn)N在AC上,且AN=2NC,AM交BN于點(diǎn)P,則AP:PM的值為( 。
A.$\frac{3}{2}$B.2C.4D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若過點(diǎn)P(a,b)(b≠a3-3a)可作曲線f(x)=x3-3x的切線恰有兩條,則(a-1)2+(b-2)2的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.閱讀以下求1+2+3+…+n的值的過程:
因?yàn)椋╪+1)2-n2=2n+1
n2-(n-1)2=2(n-1)+1

22-12=2×1+1
以上各式相加得(n+1)2-1=2×(1+2+3+…+n)+n
所以1+2+3+…+n=$\frac{{n}^{2}+2n-n}{2}$=$\frac{n(n+1)}{2}$.
類比上述過程,求12+22+32+…+n2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{lnx}{x}$-x+$\frac{a}{x}$(a∈R).
(1)當(dāng)a=0時(shí),求證:函數(shù)f(x)有且僅有一個(gè)極值點(diǎn);
(2)若對于任意的x1,x2∈[e,+∞]且x1≠x2,有不等式$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$<-1恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知$\overrightarrow{a}$=(m-2,m+3),$\overrightarrow$=(2m+1,m-2),且$\overrightarrow{a}$與$\overrightarrow$的夾角是銳角,則實(shí)數(shù)m的取值范圍是(  )
A.m>2或m<-$\frac{4}{3}$B.-$\frac{4}{3}$<m<2C.m≠2D.m≠2且m≠-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,在等腰梯形ABCD中,AB=2,CD=4,BC=$\sqrt{5}$,點(diǎn)E,F(xiàn)分別為AD,BC的中點(diǎn).如果對于常數(shù)λ,在等腰梯形ABCD的四條邊長,有且只有8個(gè)不同的點(diǎn)P,使得$\overrightarrow{PE}$$•\overrightarrow{PF}$=λ成立,那么λ的取值范圍是( 。
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{9}{20}$,$\frac{11}{4}$)C.(-$\frac{9}{20}$,-$\frac{1}{4}$)D.(-$\frac{5}{4}$,$\frac{11}{4}$)

查看答案和解析>>

同步練習(xí)冊答案