3.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=a+\sqrt{3}t\\ y=t\end{array}\right.$(t為參數(shù)).在極坐標(biāo)系(以原點O為極點,以x軸非負(fù)半軸為極軸,且與直角坐標(biāo)系xOy取相同的長度單位)中,圓C的方程為ρ=4cosθ.
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)若直線l與圓C相切,求實數(shù)a的值.

分析 (I)由ρ=4cosθ得ρ2=4ρcosθ,根據(jù)直角坐標(biāo)與極坐標(biāo)的對應(yīng)關(guān)系即可得到圓C的直角坐標(biāo)方程;
(II)求出直線l的普通方程,則圓C的圓心到直線l的距離等于圓C的半徑.

解答 解:(Ⅰ)由ρ=4cosθ得ρ2=4ρcosθ,
∴圓C的直角坐標(biāo)方程為x2+y2=4x,即(x-2)2+y2=4.
(Ⅱ)將t=y代入x=a+$\sqrt{3}t$得x-a-$\sqrt{3}y$=0,
∴直線l的普通方程是x-$\sqrt{3}$y-a=0.
由(I)知圓C的圓心為C(2,0),半徑r=2,
∵直線l與圓C相切,
∴$\frac{|2-a|}{\sqrt{1+3}}=2$,解得a=-2或a=6.

點評 本題考查了極坐標(biāo)方程,參數(shù)方程與普通方程的轉(zhuǎn)化,直線與圓的位置關(guān)系判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)a=0.61.6,b=0.61.5,c=1.50.6,則a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<c<aC.b<a<cD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知f(x)=x2+ax-$\frac{b^2}{4}+1{,_{\;}}$g(x)=2x,
(1)若A={t∈N*|t2-10t+9≤0},當(dāng)a,b∈A時,求f(x)>g(x)恒成立的概率;
(2)若B=[0,9],當(dāng)a,b∈B時,求f(x)>g(x)恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:
分組頻數(shù)頻率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合計M1
(1)求出表中M、p及圖中a的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.m為何實數(shù)時,復(fù)數(shù)z=(2+i)m2-3(i+1)m-2(1-i)是:
(1)虛數(shù);
(2)若z<0,求m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列敘述中,是隨機變量的有( 。
①某工廠加工的零件,實際尺寸與規(guī)定尺寸之差;②標(biāo)準(zhǔn)狀態(tài)下,水沸騰的溫度;③某大橋一天經(jīng)過的車輛數(shù);④向平面上投擲一點,此點坐標(biāo).
A.②③B.①②C.①③④D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知x,y為正實數(shù),且x+2y=1,則$\sqrt{xy}$的最大值是$\frac{\sqrt{2}}{4}$,$\frac{2x+y}{xy}$的最小值是9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex-ax-1,其中e為自然對數(shù)的底數(shù),e=2.71728…
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)a=1,f(x)≥mx+n-1,其中m,n∈R,求(m+1)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{3}+1,x≥0}\\{1,x<0}\end{array}\right.$,則不等式f(2-x2)>f(x)的解集為(-$\sqrt{2}$,1).

查看答案和解析>>

同步練習(xí)冊答案