5.設(shè)△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若a2sinC=4sinA,(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),則△ABC的面積為$\frac{3}{2}$.

分析 由正弦定理化簡(jiǎn)已知可得ac=4,a2+c2-b2=2$\sqrt{7}$,繼而利用余弦定理可得cosB,利用同角三角函數(shù)基本關(guān)系式可求sinB,根據(jù)三角形面積公式即可計(jì)算得解.

解答 解:∵a2sinC=4sinA,
∴由正弦定理可得:a2c=4a,解得:ac=4,
∵(ca+cb)(sinA-sinB)=sinC(2$\sqrt{7}$-c2),
∴c(a+b)(a-b)=c(2$\sqrt{7}$-c2),整理可得:a2+c2-b2=2$\sqrt{7}$,
∴由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{2\sqrt{7}}{2×4}$=$\frac{\sqrt{7}}{4}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{4}$,
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}×4×\frac{3}{4}$=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理可,同角三角函數(shù)基本關(guān)系式,三角形面積公式在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知P為橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn),F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),則$\frac{1}{|P{F}_{1}|}$+$\frac{1}{|P{F}_{2}|}$的最小值等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(4,-3),且與圓C:(x+1)2+(y+2)2=25相切,求直線(xiàn)l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.下列命題中為真命題的是③④.
①若兩個(gè)平面α∥β,a?α,b?β,則a∥b.
②若兩個(gè)平面α∥β,a?α,b?β,則a與b一定異面;
③若兩個(gè)平面α∥β,a?α,b?β,則a與b一定不相交;
④若兩個(gè)平面α∥β,a?α,b?β,則a與b共面或異面;
⑤若兩個(gè)平面α∥β,a?α,則a與β一定相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{-x},x<1}\\{lo{g}_{2}x,x≥1}\end{array}\right.$,若函數(shù)y=f(x)-k有且只有兩個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.化簡(jiǎn):$\frac{{sin(\frac{π}{2}-α)sin(2π+α)cos(-π-α)}}{{sin(\frac{3π}{2}-α)cos(3π-α)cos(\frac{π}{2}+α)}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若函數(shù)y=f(x)的最小正周期是π,且圖象關(guān)于點(diǎn)$({\frac{π}{3},0})$對(duì)稱(chēng),則f(x)的解析式可以( 。
A.$y=sin({\frac{x}{2}+\frac{5π}{6}})$B.$y=sin({2x-\frac{π}{6}})$C.y=2sin2x-1D.$y=cos({2x-\frac{π}{6}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.將邊長(zhǎng)為2的正方形ABCD沿對(duì)角線(xiàn)BD折成直二面角A-BD-C,則異面直線(xiàn)AB與CD所成的角60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.對(duì)于給定的樣本點(diǎn)所建立的模型A和模型B,它們的殘差平方和分別是${a_1},{a_2},{R^2}$的值分別為b1,b2,下列說(shuō)法正確的是(  )
A.若a1<a2,則b1<b2,A的擬合效果更好
B.若a1<a2,則b1<b2,B的擬合效果更好
C.若a1<a2,則b1>b2,A的擬合效果更好
D.若a1<a2,則b1>b2,B的擬合效果更好

查看答案和解析>>

同步練習(xí)冊(cè)答案