1.已知直線l在x軸上的截距為3,在y軸上的截距為-2,則l的方程為(  )
A.3x-2y-6=0B.2x-3y+6=0C.2x-3y-6=0D.3x-2y+6=0

分析 利用截距式即可得出.

解答 解:∵直線l在x軸上的截距為3,在y軸上的截距為-2,
則l的方程為 $\frac{x}{3}$+$\frac{y}{-2}$=1,即2x-3y-6=0.
故選:C.

點評 本題考查了截距式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

10.已知點P(x,y)滿足$\left\{\begin{array}{l}{x-y≥-1}\\{x+y≤3}\\{y≥t}\end{array}\right.$,點Q(2,-1),若($\overrightarrow{OP}•\overrightarrow{OQ}$)min=-3,則實數(shù)t=(  )
A.-2B.-1C.$\frac{3}{4}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知:點A(-2,3),M(1,1),點A′關于點M成中心對稱,則點A′的坐標是(4,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.已知$\frac{tanα}{tanα-1}=-1$,則$\frac{sinα-3cosα}{sinα+cosα}$=( 。
A.$-\frac{5}{3}$B.3C.$-\frac{3}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.隨著環(huán)保理念的深入,用建筑鋼材余料創(chuàng)作城市雕塑逐漸流行.如圖是其中一個抽象派雕塑的設計圖.圖中α表示水平地面,線段AB表示的鋼管固定在α上;為了美感,需在焊接時保證:線段AC表示的鋼管垂直于α,BD⊥AB,且保持BD與AC異面.

(1)若收集到的余料長度如下:AC=BD=24(單位長度),AB=7,CD=25,按現(xiàn)在手中的材料,求BD與α應成的角;
(2)設計師想在AB,CD中點M,N處再焊接一根連接管,然后掛一個與AC,BD同時平行的平面板裝飾物.但他擔心此設計不一定能實現(xiàn).請你替他打消疑慮:無論AB,CD多長,焊接角度怎樣,一定存在一個過MN的平面與AC,BD同時平行(即證明向量$\overrightarrow{MN}$與$\overrightarrow{AC}$,$\overrightarrow{BD}$共面,寫出證明過程);
(3)如果事先能收集確定的材料只有AC=BD=24,請?zhí)嬖O計師打消另一個疑慮:即MN要準備多長不用視AB,CD長度而定,只與θ有關(θ為設計的BD與α所成的角),寫出MN與θ的關系式,并幫他算出無論如何設計MN都一定夠用的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知全集U=R,A={x|x>1},B={x|x<0},則集合(∁UA)∩(∁UB)=( 。
A.{x|x≥0}B.{x|x≤1}C.{x|0<x<1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.化簡2sin15°sin75°的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知函數(shù)f(x)=2(sinx+cosx)-sinxcosx-2(x∈R),則f(x)的最大值為$\frac{{4\sqrt{2}-5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.計算:(Ⅰ)${log_5}25+lg\frac{1}{100}+ln\sqrt{e}+{2^{{{log}_2}3}}$
(Ⅱ)${(\frac{9}{4})^{0.5}}+{(-3)^{-1}}÷{0.75^{-2}}$.

查看答案和解析>>

同步練習冊答案