6.設(shè)計一個算法,輸出所有1000以內(nèi)的質(zhì)數(shù),畫出程序框圖.

分析 本題是常規(guī)題型,可通過循環(huán)結(jié)構(gòu)實現(xiàn).

解答 解:算法如下:
     第1步,開始.
     第2步,令i=1.     
         第3步,判斷“i是質(zhì)數(shù)”是否成立.若是,則輸出i;否則,執(zhí)行下一步.
     第4步,判斷“i<1000”是否成立.若否,則結(jié)束算法;否則,執(zhí)行下一步.
     第5步,使i的值增加l,仍用i表示.返回第3步.
程序框圖如下:

點評 本題是考查循環(huán)結(jié)構(gòu)時常用的范例,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x-1,x≥4}\\{f(f(x+2)),x<4}\end{array}}$,則f(3)=( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點F與拋物線y2=4$\sqrt{3}$x的焦點重合,短軸的下、上兩個端點分別為B1,B2,且$\overrightarrow{F{B}_{1}}$$•\overrightarrow{F{B}_{2}}$=a.
(1)求橢圓C的方程;
(2)若直線l:y=kx+m(km<0)與橢圓C交于M,N兩點,AB是橢圓C經(jīng)過原點O的弦,AB∥l,且$\frac{|AB{|}^{2}}{|MN|}$=4,問是否存在直線l,使得$\overrightarrow{OM}$$•\overrightarrow{ON}$=2?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)f(x)=-2cosx-x在區(qū)間[-$\frac{π}{2}$,$\frac{π}{2}$]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)F是橢圓E:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}=1$的左焦點,過點F且傾斜角為150°的直線l交橢圓E于M,N兩點,連接MO(O為坐標原點)并延長交橢圓于P,則△MNP面積為( 。
A.$\frac{5}{2}$B.5C.$\frac{15}{2}$D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.小明射擊一次擊中10環(huán)的概率是0.3,則小明連續(xù)射擊三次恰好有兩次擊中10環(huán)的概率是0.189.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知在底面為矩形的四棱錐D-ABCE中,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,二面角D-AE-C的平面角的正切值為-2.
(1)求證:平面ADE⊥平面CDE;
(2)求二面角A-BD-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)O為正六邊形ABCDEF的中心,在如圖所示標出的向量中,與$\overrightarrow{FE}$共線的向量有$\overrightarrow{OA}$和$\overrightarrow{BC}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的公差d>0,前n項和為Sn,a2,a5是方程x2-12x+27=0的兩根.
(1)求證:$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1;
(2)求數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案