16.已知等差數(shù)列{an}的公差d>0,前n項(xiàng)和為Sn,a2,a5是方程x2-12x+27=0的兩根.
(1)求證:$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1;
(2)求數(shù)列{$\frac{{a}_{n}}{{2}^{n}}$}的前n項(xiàng)和Tn

分析 (1)由題意可得a2=3,a5=9,再由等差數(shù)列的通項(xiàng)公式和求和公式,可得Sn=n2,即有$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,n≥2,由裂項(xiàng)相消求和,即可得證;
(2)求得數(shù)列$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,再由數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式,即可得到所求和.

解答 解:(1)證明:由a2,a5是方程x2-12x+27=0的兩根,且a2<a5,
可得a2=3,a5=9,d=$\frac{{a}_{5}-{a}_{2}}{5-2}$=2,
則an=a2+(n-2)d=3+2(n-2)=2n-1,
Sn=$\frac{1}{2}$(a1+an)n=$\frac{1}{2}$(1+2n-1)n=n2,
即有$\frac{1}{{S}_{n}}$=$\frac{1}{{n}^{2}}$<$\frac{1}{n(n-1)}$=$\frac{1}{n-1}$-$\frac{1}{n}$,n≥2,
則$\frac{1}{{S}_{2}}$+$\frac{1}{{S}_{3}}$+…+$\frac{1}{{S}_{n}}$<1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$
=1-$\frac{1}{n}$<1;
(2)數(shù)列$\frac{{a}_{n}}{{2}^{n}}$=$\frac{2n-1}{{2}^{n}}$,
前n項(xiàng)和Tn=$\frac{1}{2}$+$\frac{3}{4}$+$\frac{5}{8}$+…+$\frac{2n-1}{{2}^{n}}$,
$\frac{1}{2}$Tn=$\frac{1}{4}$+$\frac{3}{8}$+$\frac{5}{16}$+…+$\frac{2n-1}{{2}^{n+1}}$,
兩式相減可得,$\frac{1}{2}$Tn=$\frac{1}{2}$+2($\frac{1}{4}$+$\frac{1}{8}$+$\frac{1}{16}$+…+$\frac{1}{{2}^{n}}$)-$\frac{2n-1}{{2}^{n+1}}$
=$\frac{1}{2}$+2•$\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n+1}}$,
化簡(jiǎn)可得Tn=3-$\frac{2n+3}{{2}^{n}}$.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式和求和公式的運(yùn)用,考查數(shù)列的求和方法:裂項(xiàng)相消求和、錯(cuò)位相減法,同時(shí)考查等比數(shù)列的求和公式的運(yùn)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)計(jì)一個(gè)算法,輸出所有1000以內(nèi)的質(zhì)數(shù),畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在?ABCD中,AB=2BC=4,∠BAD=$\frac{π}{3}$,E是CD的中點(diǎn),則$\overrightarrow{AC}$•$\overrightarrow{EB}$等于( 。
A.2B.-3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,拋物線y=$\frac{1}{4}$x2-x+1的頂點(diǎn)A在x軸上,與y軸交于B,延長(zhǎng)AB至C,使BC=2AB,將拋物線向左平移n個(gè)單位,使拋物線與線段AC總有兩個(gè)交點(diǎn),求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知向量$\overrightarrow{a}$與向量$\overrightarrow$的夾角為θ=120°,|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$$+\overrightarrow$|=$\sqrt{13}$,求|$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知一三角形中a=2$\sqrt{3}$,b=6,A=30°,判斷三角形是否有解,若有解,解該三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.等比數(shù)列{an}中,a2,a10是方程x2-20x+16=0的解,則a5a6a7值是64.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)y=Asin(ωx+φ)+k(A>0,ω>0)的性質(zhì).ymax=A+k,ymin=-A+k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.討論下列函數(shù)的單調(diào)性:
(1)f(x)=ax-a-x(a>0且a≠1);
(2)f(x)=$\frac{bx}{{x}^{2}-1}$(-1<x<1,b≠0).

查看答案和解析>>

同步練習(xí)冊(cè)答案