3.有3名戰(zhàn)士射擊敵機(jī),每人射擊一次,1人專射駕駛員,1人專射油箱,1人專射發(fā)動(dòng)機(jī)主要部件,命中的概率分別為$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{2}$,各人射擊是獨(dú)立的,任意1人射中,敵機(jī)就被擊落,則擊落敵機(jī)的概率為(  )
A.$\frac{5}{6}$B.$\frac{3}{13}$C.$\frac{5}{9}$D.$\frac{2}{3}$

分析 根據(jù)相互獨(dú)立事件的概率乘法公式,目標(biāo)被擊中的概率等于1減去三人都沒有擊中目標(biāo)的概率,運(yùn)算求得結(jié)果.

解答 解:目標(biāo)被擊中的概率等于1減去三人都沒有擊中目標(biāo)的概率,
故目標(biāo)被擊中的概率是 1-(1-$\frac{1}{3}$)(1-$\frac{1}{2}$)(1-$\frac{1}{2}$)=$\frac{5}{6}$,
故選:A.

點(diǎn)評 本題主要考查相互獨(dú)立事件的概率乘法公式,所求的事件與它的對立事件概率間的關(guān)系,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求函數(shù)y=sin(2x-$\frac{π}{4}$)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.定義在(0,+∞)上的函數(shù)f(x)滿足:對?x∈(0,+∞),都有f(2x)=2f(x);當(dāng)x∈(1,2]時(shí),f(x)=2-x,給出如下結(jié)論:①對?m∈Z,有f(2m)=0;
②函數(shù)f(x)的值域?yàn)閇0,+∞);      
③存在n∈Z,使得f(2n+1)=9;
④函數(shù)f(x)在區(qū)間(a,b)單調(diào)遞減的充分條件是“存在k∈Z,使得(a,b)⊆(2k,2k+1),
其中所有正確結(jié)論的序號是:①②④.(請將所有正確命題的序號填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+(k-1)x-k+$\frac{3}{2}$,g(x)=xlnx.
(Ⅰ)若函數(shù)g(x)的圖象在(1,0)處的切線l與函數(shù)f(x)的圖象相切,求實(shí)數(shù)k的值;
(Ⅱ)當(dāng)k=0時(shí),證明:f(x)+g(x)>0;
(Ⅲ)設(shè)h(x)=f(x)+g′(x),若h(x)有兩個(gè)極值點(diǎn)x1,x2(x1≠x2),且h(x1)+h(x2)<$\frac{7}{2}$,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的一個(gè)頂點(diǎn)恰好是拋物線x2=4$\sqrt{3}$y的焦點(diǎn),且離心率為e=$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)過原點(diǎn)的直線與橢圓C交于A,B兩點(diǎn),過橢圓C的右焦點(diǎn)作直線l∥AB交橢圓C于M,N兩點(diǎn).試問$\frac{{{{|{AB}|}^2}}}{{|{MN}|}}$是否為定值,若為定值,請求出這個(gè)定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.化簡(1+2${\;}^{-\frac{1}{16}}$)(1+2${\;}^{-\frac{1}{8}}$)(1+2${\;}^{-\frac{1}{4}}$)(1+2${\;}^{-\frac{1}{2}}$)得到的結(jié)果是( 。
A.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)-1B.(1-2${\;}^{-\frac{1}{16}}$)-1C.1-2${\;}^{-\frac{1}{16}}$D.$\frac{1}{2}$(1-2${\;}^{-\frac{1}{16}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)M,N,P分別為AB1,BC1,DD1的中點(diǎn),給出下列結(jié)論:
①M(fèi)N⊥AA1
②直線C1M與平面ABCD所成角的正弦值為$\frac{{\sqrt{5}}}{5}$
③MN⊥BP
④四面體B-DA1C1的體積為$\frac{1}{3}$
則正確結(jié)論的序號為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知A、B為拋物線C:y2=4x上的不同兩點(diǎn),F(xiàn)為拋物線C的焦點(diǎn),若$\overrightarrow{FA}$=-4$\overrightarrow{FB}$,則直線AB的斜率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=sinxcosx+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$.
(1)求f(x)的最小正周期;
(2)在△ABC中,角A,B,C的對邊分別為a,b,c,S為△ABC的面積,若$\sqrt{3}$(b2+c2-a2)=4S,求f(A).

查看答案和解析>>

同步練習(xí)冊答案