15.函數(shù)y=3${\;}^{\sqrt{x-2}}}$的值域為[1,+∞).

分析 根據(jù)復(fù)合函數(shù)的性質(zhì),求解出u=$\sqrt{x-2}$的值域,再求解y=3u的值域即可.

解答 解:函數(shù)y=3${\;}^{\sqrt{x-2}}}$,
令u=$\sqrt{x-2}$,可知u≥0,
∴函數(shù)y=3u是增函數(shù),在區(qū)間[0,+∞)是單調(diào)遞增.
當u=0時,y取得最小值為1.
∴函數(shù)y=3${\;}^{\sqrt{x-2}}}$的值域為[1,+∞)
故答案為[1,+∞)

點評 本題考查了分段函數(shù)的值域的求法.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.某幾何體由圓柱挖掉半個球和一個圓錐所得,三視圖中的正視圖和側(cè)視圖如圖所示,求該幾何體的表面積( 。
A.60πB.75πC.90πD.93π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.化簡$\sqrt{1-{{sin}^2}{{140}°}}$=( 。
A.±cos40°B.cos40°C.-cos40°D.±|cos40°|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$,一個頂點為A(2,0),離心率為$\frac{{\sqrt{2}}}{2}$,直線y=k(x-1)與橢圓C交于不同的兩點M、N兩點.
(1)求橢圓C的方程;
(2)當△AMN的面積為$\frac{{4\sqrt{2}}}{5}$時,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項和為Sn,且滿足Sn+2=2an,n∈N*
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{lo{g}_{2}{a}_{n}}$,cn=$\frac{\sqrt{_{n}_{n+1}}}{\sqrt{n+1}+\sqrt{n}}$,求數(shù)列{cn}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={x|x2-2x-15>0},B={x|x-6<0}.命題p:“m∈A”;命題q:“m∈B”.
(1)若命題p為真命題,求實數(shù)m的取值范圍;
(2)若命題“p∨q”和“p∧q”中均為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.四棱錐P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(1)求證:平面PBC⊥平面PCD;
(2)若M為線段PC上一點,且$\overrightarrow{PM}$=2$\overrightarrow{MC}$,求線段AM與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中內(nèi)角A,B,C所對的邊分別為a,b,c,已QUOTE 知$2\sqrt{3}si{n^2}\frac{A+B}{2}-sinC=\sqrt{3}$
( I)求角C的大。
( II)若$c=\sqrt{3},a=\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知集合A={(x,y)|x2=y+1,|x|<2,x∈Z},試用列舉法表示集合A={(-1,0),(0,-1),(1,0)}.

查看答案和解析>>

同步練習(xí)冊答案