8.函數(shù)f(x)=3-2sin2x是(  )
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的偶函數(shù)D.最小正周期為π的奇函數(shù)

分析 利用余弦二倍角公式和余弦函數(shù)性質(zhì)求解.

解答 解:∵f(x)=3-2sin2x=2+cos2x,
∴函數(shù)f(x)=3-2sin2x是最小正周期為π的偶函數(shù).
故選:C.

點評 本題考查三角函數(shù)的周期性和奇偶性的判斷,是基礎(chǔ)題,解題時要認(rèn)真審題,注意余弦二倍角公式和余弦函數(shù)性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四棱錐P-ABCD的底面ABCD為一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB=AP,PA⊥底面ABCD,E是PC的中點.
(1)求證:BE∥平面PAD; 
(2)求異面直線PD與BC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知兩條直線相互垂直l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,則m的值為-$\frac{13}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一般地,若f(x)的定義域為[a,b],值域為[ka,kb],(a<b),則稱[a,b]為函數(shù)f(x)的“k倍保值區(qū)間”.特別地,若f(x)的定義域為[a,b],值域也為[a,b],(a<b),則稱[a,b]為函數(shù)f(x)的“保值區(qū)間”.
(1)若[1,b]為g(x)=$\frac{1}{2}{x^2}-x+\frac{3}{2}$的保值區(qū)間,求常數(shù)b的值;
(2)問是否存在常數(shù)a,b(a>-2)使函數(shù)h(x)=$\frac{1}{x+2}$的保值區(qū)間為[a,b]?若存在,求出a,b的值,否則,請說明理由.
(3)求函數(shù)p(x)=$\frac{1}{2}$x2+$\frac{13}{2}$的2倍保值區(qū)間[a,b].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知全集I=R,集合A={x|x2+2x-3>0},$B=\left\{{x|\frac{x+5}{x-1}<0}\right\}$,求
(1)A∩B;
(2)A∪(∁IB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)α是銳角,3個實數(shù)1,sinα+cosα,sinαcosα中最大的是sinα+cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,三棱柱ABC-A1B1C1的底面是正三角形,側(cè)棱AA1⊥底面ABC,AB=1,AA1=2,點D在側(cè)棱AA1上,點G,H分別是△ABC,△BCD的重心.
(1)求證:GH∥AD;
(2)當(dāng)AH=$\frac{\sqrt{3}}{2}$時,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知向量$\overrightarrow{OA},\overrightarrow{OB}$為單位向量,且$\overrightarrow{OA}•\overrightarrow{OB}=\frac{1}{4}$,點C是向量$\overrightarrow{OA},\overrightarrow{OB}$的夾角內(nèi)一點,$|\overrightarrow{OC}|=4$,$\overrightarrow{OB}•\overrightarrow{OC}=\frac{7}{2}$.若數(shù)列{an}滿足$\overrightarrow{OC}=\frac{{3{a_{n+1}}({a_n}+1)}}{{2{a_n}}}\overrightarrow{OB}+{a_1}\overrightarrow{OA}$,則a4=$\frac{16}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.不等式|x-1|+|x-2|≤3的最小整數(shù)解是0.

查看答案和解析>>

同步練習(xí)冊答案