分析 (1)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,利用向量法能證明BE∥平面PAD.
(2)求出$\overrightarrow{PD}$=(0,2,-2),$\overrightarrow{BC}$=(1,2,0),由此利用向量法能求出異面直線PD與BC所成角的余弦值.
解答 證明:(1)以A為原點(diǎn),AB為x軸,AD為y軸,AP為z軸,建立空間直角坐標(biāo)系,
設(shè)CD=AD=2AB=AP=2,
則B(1,0,0),P(0,0,2),C(2,2,0),E(1,1,1),
$\overrightarrow{BE}$=(0,1,1),
∵平面PAD的法向量$\overrightarrow{n}$=(1,0,0),∴$\overrightarrow{BE}•\overrightarrow{n}$=0,
∵BE?平面PAD,∴BE∥平面PAD.
解:(2)D(0,2,0),$\overrightarrow{PD}$=(0,2,-2),$\overrightarrow{BC}$=(1,2,0),
設(shè)異面直線PD與BC所成角為θ,
則cosθ=$\frac{|\overrightarrow{PD}•\overrightarrow{BC}|}{|\overrightarrow{PD}|•|\overrightarrow{BC}|}$=$\frac{|4|}{\sqrt{8}•\sqrt{5}}$=$\frac{\sqrt{10}}{5}$,
所以異面直線PD與BC所成角的余弦值為$\frac{\sqrt{10}}{5}$.
點(diǎn)評(píng) 本題考查線面平行的證明,考查異面直線所成角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2017屆河南新鄉(xiāng)一中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:填空題
函數(shù)的值域是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若直線與平面沒(méi)有公共點(diǎn),則它們平行 | |
B. | 如果兩直線沒(méi)有公共點(diǎn),那么這兩直線平行 | |
C. | 若兩平面沒(méi)有公共點(diǎn),則它們平行 | |
D. | 若一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,則這兩個(gè)平面垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最小正周期為2π的偶函數(shù) | B. | 最小正周期為2π的奇函數(shù) | ||
C. | 最小正周期為π的偶函數(shù) | D. | 最小正周期為π的奇函數(shù) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com