13.設(shè)α是銳角,3個(gè)實(shí)數(shù)1,sinα+cosα,sinαcosα中最大的是sinα+cosα.

分析 先用輔助角公式得出sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$),再根據(jù)倍角公式得出sinαcosα=$\frac{1}{2}$sin2α,進(jìn)而得出這三個(gè)數(shù)中的最大值.

解答 解:∵α是銳角,∴α∈(0,$\frac{π}{2}$),
則sinα+cosα=$\sqrt{2}$sin(α+$\frac{π}{4}$),
其中α+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{3π}{4}$),
所以,sinα+cosα∈(1,$\sqrt{2}$],
因此,sinα+cosα>1,
又因?yàn),sinαcosα=$\frac{1}{2}$sin2α≤$\frac{1}{2}$<1,
所以,1,sinα+cosα,sinαcosα的大小關(guān)系為:
sinαcosα<1<sinα+cosα,
因此,這三個(gè)數(shù)中最大的是:sinα+cosα,
故答案為:sinα+cosα.

點(diǎn)評(píng) 本題主要考查了三角函數(shù)值的大小比較,涉及倍角公式,輔助角公式的應(yīng)用,以及函數(shù)三角函數(shù)的圖象和性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知0<α<$\frac{π}{2}$,sinα=$\frac{4}{5}$.
(1)求tanα的值;
(2)求cosα+sin(α+$\frac{π}{2}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知復(fù)數(shù)z滿足:(1+i)z=i(i為虛數(shù)單位),則|z|等于( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若0<x<y<1,則( 。
A.3y<3xB.x0.5<y0.5C.logx3<logy3D.log0.5x<log0.5y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=3-2sin2x是(  )
A.最小正周期為2π的偶函數(shù)B.最小正周期為2π的奇函數(shù)
C.最小正周期為π的偶函數(shù)D.最小正周期為π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知某圓錐曲線和橢圓$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1有相同的焦點(diǎn),且經(jīng)過圓(x-4)2+(y+$\sqrt{15}$)2=64的圓心,求此圓錐曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知中心在原點(diǎn)O的橢圓,右焦點(diǎn)為F(1,0),經(jīng)過F點(diǎn)且與x軸垂直的弦長為$\sqrt{2}$,過點(diǎn)F的直線l與橢圓交于A,B兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)求$\overrightarrow{OA}$•$\overrightarrow{OB}$的范圍;
(Ⅲ)若直線AB的斜率為k,若向量$\overrightarrow{a}$=(-2$\sqrt{2}$,1)與$\overrightarrow{OA}$+$\overrightarrow{OB}$共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)和函數(shù)g(x)滿足f(x)=g(x)+m,(m∈R),其中g(shù)(x)=$\frac{2}{{4}^{x}-1}$;
(I)若函數(shù)f(x)是奇函數(shù),求常數(shù)m的值;
(II)求g(-2015)+g(-2014)+…+g(-2)+g(-1)+g(1)+g(2)+…+g(2014)+g(2015)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線3x+2y-3=0與6x+my+7=0互相平行,則它們之間的距離是( 。
A.4B.$\frac{{\sqrt{13}}}{2}$C.$\frac{{2\sqrt{13}}}{13}$D.$\frac{{7\sqrt{13}}}{26}$

查看答案和解析>>

同步練習(xí)冊(cè)答案