分析 以B為坐標(biāo)原點,以BC為x軸正方向建立坐標(biāo)系,設(shè)C(2a,0),A(2b,2c),則D(b,c),E(a+b,c),設(shè)F點坐標(biāo)為(t,c),求出G,H點坐標(biāo),進(jìn)而可得$\frac{AG}{GC}+\frac{AH}{HB}$的值.
解答 解:如圖所示,以B為坐標(biāo)原點,以BC為x軸正方向建立坐標(biāo)系,
設(shè)C(2a,0),A(2b,2c),則D(b,c),E(a+b,c),
設(shè)F點坐標(biāo)為(t,c),
則直線BG的方程為:y=$\frac{c}{t}$x,
直線AC的方程為:y=$\frac{c}{b-a}$(x-2a),
聯(lián)立直線AC與BD的方程可得:$\frac{c}{t}$x=$\frac{c}{b-a}$(x-2a),
解得:x=$\frac{2t}{a+t-b}$,
故$\frac{AG}{GC}$=$\frac{\frac{2at}{a+t-b}-2b}{2a-\frac{2at}{a+t-b}}$=$\frac{at-ab-bt+^{2}}{{a}^{2}-ab}$,
同理可得:$\frac{AH}{HB}$=$\frac{a+b-t}{a}$,
∴$\frac{AG}{GC}+\frac{AH}{HB}$=$\frac{at-ab-bt+^{2}}{{a}^{2}-ab}$+$\frac{a+b-t}{a}$=1
點評 本題考查的知識點是直線的交點坐標(biāo),建立坐標(biāo)系,求出點的坐標(biāo),是解答的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1” | |
B. | 命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R 均有x2+x+1<0” | |
C. | 在△ABC中,“A>B”是“sinA>sinB”的充要條件 | |
D. | “x≠2或y≠1”是“x+y≠3”既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com