13.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1的一個焦點在拋物線y2=8x的準線上,則該雙曲線的離心率為(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

分析 求出拋物線的準線方程,可得雙曲線的一個焦點,即為c=2,運用雙曲線的a,b,c的關(guān)系,可得a=1,由離心率公式計算即可得到所求值.

解答 解:拋物線y2=8x的準線為x=-2,
由題意可得雙曲線的一個焦點為(-2,0),
由雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{3}$=1,可得a2+3=4,
解得a=1,(設(shè)a>0),
可得雙曲線的離心率為e=$\frac{c}{a}$=2.
故選:D.

點評 本題考查雙曲線的離心率的求法,注意運用拋物線的準線方程,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=-sin$\frac{π}{2}$x-1,g(x)=logax(a>0且a≠1),若F(x)=f(x)-g(x)至少有三個零點,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.($\frac{\sqrt{3}}{3}$,1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知點F1,F(xiàn)2為雙曲線$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左,右焦點,點P在雙曲線C的右支上,且滿足|PF2|=|F1F2|,∠F1F2P=120°,則雙曲線的離心率為$\frac{\sqrt{3}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在平面直角坐標系中,已知曲線C1:$\frac{x^2}{a^2}+{y^2}$=1(0<a<2),曲線C2:x2+y2-x-y=0,Q是C2上的動點,P是線段OQ延長線上的一點,且P滿足|OQ|•|OP|=4.
(Ⅰ)以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,化C2的方程為極坐標方程,并求點P的軌跡C3的方程;
(Ⅱ)設(shè)M、N分別是C1與C3上的動點,若|MN|的最小值為$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.數(shù)列{an}滿足a1=1,a2=7,令bn=an•an+1,{bn}是公比為q(q>0)的等比數(shù)列,設(shè)cn=a2n-1+a2n
(1)求證:${c_n}=8•{q^{n-1}},n∈N*$;
(2)設(shè){cn}的前n項和為Sn,求$\lim_{n→∞}\frac{1}{S_n}$的值;
(3)設(shè){cn}前n項積為Tn,當$q=\frac{1}{2}$時,求n為何值時,Tn取到最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.數(shù)列{an}滿足a1=1,且an+1=a1+an+n(n∈N*),則$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{2016}}$等于( 。
A.$\frac{2015}{2016}$B.$\frac{4028}{2015}$C.$\frac{4032}{2017}$D.$\frac{2014}{2015}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知數(shù)列{an}前n項和為Sn,且滿足3Sn-4an+2=0.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令bn=log2an,Tn為{bn}的前n項和,求證:$\sum_{k=1}^n{\frac{1}{{T{\;}_k}}}<2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.雙曲線$\frac{x^2}{4}-\frac{y^2}{b^2}=1$的右焦點與拋物線${y^2}=8\sqrt{2}x$的焦點重合,則該雙曲線的漸近線的方程是y=±x.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.如圖,點F1、F2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左右焦點,點A、B、C分別為雙曲線上三個不同的點,且AC經(jīng)過坐標原點O,并滿足$\overrightarrow{A{F_2}}=\frac{1}{2}\overrightarrow{{F_2}B}$,$\overrightarrow{AB}•\overrightarrow{C{F_2}}=0$,則雙曲線的離心率為$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

同步練習冊答案