13.已知集合M={x|x≥-$\frac{1}{2}$},N={x|1-x2≥0},則∁R(M∪N)=(  )
A.(-∞,-1]B.(-∞,-1)C.(-1,+∞)D.[-1,+∞)

分析 求出集合N,利用集合的基本運算進行求解即可.

解答 解:因為N={x|1-x2≥0}={x|-1≤x≤1},又M={x|x≥-$\frac{1}{2}$},所以M∪N={x|x≥-1}.所以CR(M∪N)={x|x<-1}.
故選:B.

點評 本題主要考查集合的基本運算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)F1,F(xiàn)2分別為雙曲線C的左右焦點,直線l過F2且與C的右支交于A,B兩點,若△F1AB為直角三角形,且|F1A|,|AB|,|F1B|成等差數(shù)列,則雙曲線C的離心率為(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\frac{\sqrt{10}}{3}$D.$\frac{2\sqrt{10}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖所示,已知點G是△ABC的重心,過點G作直線與AB,AC兩邊分別交于M,N兩點,且$\overrightarrow{AM}$=x$\overrightarrow{AB}$,$\overrightarrow{AN}$=y$\overrightarrow{AC}$,則x+2y的最小值為( 。
A.2B.$\frac{1}{3}$C.$\frac{{3+2\sqrt{2}}}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知p:A={x|x2-(a+1)x+a≤0},q:B={x|x2-3x+2≤0},若p是q的充分而不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=$\frac{x}{lnx}$-ax.
(1)若a≥$\frac{1}{4}$,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,在△ABC中,AB=2,BC=3,∠ABC=60°,AH⊥BC于點H,M為AH的中點,若$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{BC}$,則λ+μ=$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.計算 $\sqrt{a\sqrt{a}\sqrt{a}}$=a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,a=2$\sqrt{3},b=3\sqrt{2},cosC=\frac{1}{3}$,則△ABC的面積為( 。
A.3$\sqrt{3}$B.2$\sqrt{3}$C.4$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.與函數(shù)$f(x)=\sqrt{{x^2}-1},g(x)=\sqrt{\frac{x+2}{x+1}}$的積函數(shù)h(x)=$\sqrt{(x-1)(x+2)}$,(x>1或x≤-2).

查看答案和解析>>

同步練習(xí)冊答案