5.方程log2(x+2)=3x的實數(shù)根個數(shù)為2.

分析 作函數(shù)y=log2(x+2)與y=3x的圖象,從而化方程的解的個數(shù)為圖象的交點的個數(shù).

解答 解:作函數(shù)y=log2(x+2)與y=3x的圖象如下,
,
函數(shù)的圖象有兩個不同的交點,
故方程log2(x+2)=3x的實數(shù)根個數(shù)為2,
故答案為:2.

點評 本題考查了方程的根與函數(shù)圖象的交點的關(guān)系應(yīng)用及數(shù)形結(jié)合的思想應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三個內(nèi)角A、B、C所對的邊分別為a、b、c,△ABC的面積為S,4$\sqrt{3}S$=($\sqrt{3}$-1)(a2+b2)+c2
(1)求角C的取值范圍;
(2)若c=1,求△ABC周長y的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)是定義在R上的奇函數(shù),在(0,+∞)上是增函數(shù),且f(2)=0,則使得f(x)<0的x的取值范圍是(0,2)∪(-∞,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=2x,且f(a+2)=8.
(1)求a的值;
(2)設(shè)函數(shù)g(x)=a-$\frac{2a}{f(x)+1}$,判斷g(x)的單調(diào)性,并用定義法證明;
(3)若函數(shù)h(x)=meax+e2x(其中e=2.718…),x∈[0,ln2]的最小值為0,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.命題p:x∈{x|x2-6x+8=0},命題q:x∈{x|x2+2(a+1)x+a2+3a=0},若¬p是¬q的充分不必要條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸.
(1)用a分別表示b和c;
(2)討論函數(shù)g(x)=-f(x)•e-x的單調(diào)性;
(3)當a=-3時,若對任意的x1,x2∈[-2,+∞),不等式|g(x1)-g(x2)≤M恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2asin2x+2sinxcosx-a的圖象關(guān)于直線x=$\frac{5π}{12}$對稱.
(1)求常數(shù)a;
(2)當x∈[0,$\frac{π}{2}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.討論函數(shù)y=x${\;}^{\frac{2}{5}}$的定義域、值域、奇偶性、單調(diào)性,并畫出函數(shù)圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知圓的方程為x2+(y-1)2=4,若過點P(1,$\frac{1}{2}$)的直線l與圓交于A、B兩點,圓心為C,則圓∠ACB最小時,直線l的方程為4x-2y-3=0.

查看答案和解析>>

同步練習(xí)冊答案