分析 求出f(x)的導(dǎo)數(shù),求得切線的斜率,由兩直線平行的條件:斜率相等,可得x0為x+1=e-x的解,運用單調(diào)性可得方程的解,進而得到P的坐標.
解答 解:f(x)=xex的導(dǎo)數(shù)為f′(x)=(x+1)ex,
可得切線的斜率為(x0+1)ex0,
由切線與直線y=x+1平行,可得
(x0+1)ex0=1,
即有x0為x+1=e-x的解,
由y=x+1-e-x,在R上遞增,且x=0時,y=0.
即有x0=0,
則P的坐標為(0,0).
故答案為:(0,0).
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,正確求導(dǎo)和運用單調(diào)性解方程是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | P?Q | B. | Q?P | C. | P=Q | D. | P∪Q=R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 671.5 | C. | 671 | D. | 672 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a=0,b=-1 | B. | a=2,b=1 | C. | a=-π,b=π | D. | a=0,b=0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com