12.解含有絕對(duì)值符號(hào)的不等式|2x-3|≤5.

分析 由不等式|2x-3|≤5,可得-5≤2x-3≤5,由此求得x的范圍.

解答 解:由不等式|2x-3|≤5,可得-5≤2x-3≤5,求得-1≤x≤4,
故不等式的解集為[-1,4].

點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}滿足:a1=2,a3+a5=-4.
(Ⅰ)若數(shù)列{an}是等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若a4=-1,且2an+1=an+an+2+k(n∈N*,k∈R),
①證明數(shù)列{an+1-an}是等差數(shù)列;
②?求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知命題p:若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$∥$\overrightarrow{c}$,則$\overrightarrow{a}$∥$\overrightarrow{c}$,命題q:?x∈(0,$\frac{π}{2}$),sinx<tanx,則下列命題中的真命題是( 。
A.p∧qB.p∨(¬q)C.(¬p)∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-(x-2)^{2}+2,x≤1}\\{|x-2|,x>1}\end{array}\right.$,則f(f(3))=1,f(x)的單調(diào)減區(qū)間是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知曲線f(x)=xex在點(diǎn)P(x0,f(x0))處的切線與直線y=x+1平行,則點(diǎn)P的坐標(biāo)為(0,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)$f(x)=-2tanx+m,x∈[-\frac{π}{4},\frac{π}{3}]$有零點(diǎn),則實(shí)數(shù)m的取值范圍是$[-2\;,\;2\sqrt{3}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)m<0,點(diǎn)M(m,-2m)為角α的終邊上一點(diǎn),則$\frac{1}{{2sinαcosα+{{cos}^2}α}}$的值為(  )
A.$-\frac{5}{3}$B.-2C.$\frac{2}{3}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若z(1+i)=(1-i)2(i為虛數(shù)單位),則復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是A1B1、B1C1的中點(diǎn).
(1)求三棱錐A1-AB1D1體積;
(2)求異面直線DB1與EF所成的角.

查看答案和解析>>

同步練習(xí)冊(cè)答案