9.在等差數(shù)列{an}中,已知a1=20,前n項和為Sn,且S6=S15,
(1)求{an}的通項公式;
(2)求當n取何值時,Sn取得最大值,并求出它的最大值;
(3)求數(shù)列{|an|}的前n項和Tn

分析 (1)根據(jù)等差數(shù)列前n項和公式$\frac{({a}_{1}+{a}_{6})×6}{2}$=$\frac{{(a}_{1}+{a}_{15})×15}{2}$,將a1=20,即可求得公差d,根據(jù)等差數(shù)列通項公式即可求得{an}的通項公式;
(2)根據(jù)二次函數(shù)圖象對稱確定,當n=11,a11=0,可知n=10或11時,S10=S11,Sn取得最大值,根據(jù)等差數(shù)列前n項和公式,即可求得Sn取得最大值;
(3)由題意可知當n≤11時,an≥0,求得Tn,當n≥12時,an<0根據(jù)數(shù)列的性質,可知Tn=2S11-(21n-n2)=n2-21n+220,即可求得數(shù)列{|an|}的前n項和Tn

解答 解:(1)由題意可知:S6=S15,即$\frac{({a}_{1}+{a}_{6})×6}{2}$=$\frac{{(a}_{1}+{a}_{15})×15}{2}$,
∴2a6=3a1+5a15
∴2(a1+5d)=3a1+5(a1+14d),
解得:d=-2,
∴an=20+(-2)(n-1)=22-2n,
∴{an}的通項公式an=22-2n;
(2)由題意可知,S6=S15
∴Sn=f(n)的對稱軸方程為:n=$\frac{6+15}{2}$=10.5,
10.5∉N*,
∴n=10或11時,S10=S11,
∴a11=0,d<0,
∴S10=S11=$\frac{(20+0)×11}{2}$=110,
Sn最大值為110.
(3)由題意可知:a11=0,
∴當n≤11時,an≥0,
Tn=$\frac{(20+22-2n)n}{2}$=21n-n2,
當n≥12時,an<0,
Tn=2S11-(21n-n2)=n2-21n+220,
∴${S_n}=\left\{\begin{array}{l}21n-{n^2},1≤n≤11\\ 220-21n+{n^2},n≥12.\end{array}\right.$.

點評 本題考查等差數(shù)列的通項公式及前n項和公式,考查等差數(shù)列前n項和公式的性質及其圖象,考查含絕對值數(shù)列的前n項和公式的求法,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知函數(shù)f(x)=ex-$\frac{m}{x}$在區(qū)間[1,2]上的最小值為1,則實數(shù)m的值為e-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知實數(shù)x,y,滿足$\left\{\begin{array}{l}x+y=3\\ 1≤x≤2\end{array}\right.$,則22x+y的最大值為( 。
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象如圖所示,則下面結論正確的是( 。
A.函數(shù)f(x)的最小正周期為$\frac{π}{2}$B.φ=$\frac{π}{9}$
C.函數(shù)f(x)的圖象關于直線x=$\frac{5π}{6}$對稱D.函數(shù)f(x)在區(qū)間[0,$\frac{π}{4}$]上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.(x2-1)(x-2)7的展開式中x3項的系數(shù)是-112.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=x2-2alnx.
(1)求函數(shù)f(x)的單調區(qū)間;
(2)若不等式$f(x)≥{x^2}-\frac{2a}{e}•{e^x}+{a^2}$恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.2名廚師和3位服務員共5人站成一排合影,若廚師甲不站兩端,3位服務員中有且只有兩位服務員相鄰,則不同排法的種數(shù)是(  )
A.60B.48C.42D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.以下四個命題中,真命題的個數(shù)是 ( 。
①若a+b≥2,則a,b中至少有一個不小于1;
②$\overrightarrow{a}$•$\overrightarrow$=0是$\overrightarrow{a}$⊥$\overrightarrow$的充要條件;
③?x∈[0,+∞),x3+x≥0;
④函數(shù)y=f(x+1)是奇函數(shù),則y=f(x)的圖象關于(1,0)對稱.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.在△ABC中,設a,b,c分別為角A,B,C的對邊,若a=5,A=$\frac{π}{4}$,cosB=$\frac{3}{5}$,則邊b=4$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案