A. | -1 | B. | 3 | C. | 11 | D. | 12 |
分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,求最大值.
解答 解:作出不等式組$\left\{\begin{array}{l}x-y≤1\\ x+y≥1\\ y-2≤0\end{array}\right.$對應的平面區(qū)域如圖:(陰影部分).
由z=3x+y得y=-3x+z,
平移直線y=-3x+z,
由圖象可知當直線y=-3x+z經(jīng)過點A時,直線y=-3x+z的截距最大,
此時z最大.
由$\left\{\begin{array}{l}x-y=1\\ y-2=0\end{array}\right.$,解得$\left\{\begin{array}{l}x=3\\ y=2\end{array}\right.$,即A(3,2),
代入目標函數(shù)z=3x+y得z=3×3+2=11.
即目標函數(shù)z=3x+y的最大值為11.
故選:C.
點評 本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學思想是解決此類問題的基本方法.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$\frac{1}{2}$,$\frac{4}{3}$] | B. | [0,$\frac{1}{2}$] | C. | (-∞,0]∪[$\frac{4}{3}$,+∞) | D. | [0,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,1) | B. | (-1,-$\frac{1}{2}$)∪($\frac{1}{3}$,1) | C. | (-∞,-$\frac{1}{2}$)∪($\frac{1}{3}$,1) | D. | (-∞,-$\frac{1}{2}$)∪($\frac{1}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{470+10\sqrt{30}}}{3}$ | B. | 175 | C. | 180 | D. | 295+10$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com