4.已知曲線C1的極坐標(biāo)方程p2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,曲線C1經(jīng)過坐標(biāo)變換$\left\{{\begin{array}{l}{x=2x'}\\{y=\sqrt{3}y'}\end{array}}$得到曲線C2,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t為參數(shù),t∈R)
(Ⅰ)求直線l的普通方程和曲線C1的直角坐標(biāo)方程;
(Ⅱ)若P為曲線C2上的點(diǎn),求點(diǎn)P到直線l的距離的最大值.

分析 (Ⅰ)直線l消去參數(shù)t,能求出直線l的普通方程,由ρsinθ=y,ρcosθ=x,能求出曲線C1的直角坐標(biāo)方程.
(Ⅱ)由坐標(biāo)變換求出曲線C2的方程為x'2+y'2=1,求出圓心C2到直線l的距離,由此能求出點(diǎn)P到直線l的距離的最大值.

解答 解:(Ⅰ)∵直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t為參數(shù),t∈R),
消去參數(shù)t,得直線l的普通方程為:x-y-2=0…(2分)
∵曲線C1的極坐標(biāo)方程ρ2=$\frac{12}{3co{s}^{2}θ+4si{n}^{2}θ}$,
∴3ρ2cos2θ+4ρ2sin2θ=12,
∵ρsinθ=y,ρcosθ=x,
∴曲線C1的直角坐標(biāo)方程為:3x2+4y2=12,即$\frac{x^2}{4}+\frac{y^2}{3}=1$…(4分)
(Ⅱ)∵曲線C1經(jīng)過坐標(biāo)變換$\left\{{\begin{array}{l}{x=2x'}\\{y=\sqrt{3}y'}\end{array}}$得到曲線C2,
∴由題意知,曲線C2的方程為x'2+y'2=1,其圓心C2(0,0),半徑r=1…(8分)
∴圓心C2(0,0)到直線l:x-y-2=0的距離$d=\frac{2}{{\sqrt{2}}}=\sqrt{2}$…(10分)
∴點(diǎn)P到直線l的距離的最大值為$d+1=\sqrt{2}+1$…(12分)

點(diǎn)評(píng) 本題考查直線l的普通方程和曲線C1的直角坐標(biāo)方程的求法,考查點(diǎn)P到直線l的距離的最大值的求法,是中檔題,解題時(shí)要注意極坐標(biāo)方程、參數(shù)方程、普通方程互化公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}中,a1=$\frac{4}{3}$,且有an+1=an2-an+1,n∈N*
(I)求證:數(shù)列{an}是遞增數(shù)列;
(Ⅱ)記Sn=$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}$,Tn=$\frac{1}{{a}_{1}}•\frac{1}{{a}_{2}}•…•\frac{1}{{a}_{n}}$求證:Sn+3Tn=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.王華大學(xué)畢業(yè)后在一家公司做推銷員,他對(duì)自己的工作業(yè)績進(jìn)行匯總時(shí)得到如下的一個(gè)表格:
工作時(shí)間(單位:月)與月推銷金額(單位:萬元)的有關(guān)數(shù)據(jù):
工作時(shí)間x 35679
月推銷金額y23345
(1)畫出散點(diǎn)圖,判斷月推銷金額y與工作時(shí)間x是否有線性相關(guān)關(guān)系;
(2)如果y與x之間具有線性相關(guān)關(guān)系,求出線性回歸方程;
(3)若王華的工作時(shí)間為12個(gè)月,試估計(jì)他的月推銷金額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求證:${C}_{n}^{0}$+2${C}_{n}^{1}$+3${C}_{n}^{2}$+…+(n+1)${C}_{n}^{n}$=2n+n•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知F1,F(xiàn)2是橢圓$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{3}$=1的兩個(gè)焦點(diǎn),過F1的直線交此橢圓于A,B兩點(diǎn),若|AF2|+|BF2|=8,則|AB|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.方程(lga+lgx)•(lga+2lgx)=4有兩個(gè)小于1的正根α,β.
(1)若lgα+lgβ=-$\frac{9}{2}$,求a的值;
(2)若|lgα-lgβ|≤2$\sqrt{3}$,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知四棱錐A-BCDE的底面是邊長為4的正方形,面ABC⊥底面BCDE,且AB=AC=4,則四棱錐A-BCDE外接球的表面積為$\frac{112π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)極坐標(biāo)的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸是x軸的正半軸,取相同的單位長度,已知直線1的參數(shù)方程為$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),且α≠kπ+$\frac{π}{2}$,k∈z),圓C的極坐標(biāo)方程為p=2$\sqrt{2}$cos(θ+$\frac{π}{4}$),且圓C與直線l不相交.
(I)求直線l的普通方程;
(Ⅱ)設(shè)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=a}\\{y=-\frac{2}{\sqrt{a}}}\end{array}\right.$ (a為參數(shù)),點(diǎn)P在曲線C1上.求點(diǎn)P到直線1距離的最小值及取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在平行四邊形ABCD中,AC=5,BD=4,則$\overrightarrow{AB}$•$\overrightarrow{BC}$=( 。
A.$\frac{41}{4}$B.-$\frac{41}{4}$C.$\frac{9}{4}$D.-$\frac{9}{4}$

查看答案和解析>>

同步練習(xí)冊答案