【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為(為參數(shù))
(1)求曲線的直角坐標(biāo)方程及曲線的極坐標(biāo)方程;
(2)當(dāng)()時(shí)在曲線上對(duì)應(yīng)的點(diǎn)為,若的面積為,求點(diǎn)的極坐標(biāo),并判斷是否在曲線上(其中點(diǎn)為半圓的圓心)
【答案】(1)曲線的普通方程為,曲線的極坐標(biāo)方程為,( );(2)見解析.
【解析】試題分析:(1)曲線的極坐標(biāo)方程為兩邊同乘以,利用 即可得曲線的直角坐標(biāo)方程,利用代入法將曲線的參數(shù)方程消去參數(shù)可得普通方程,再化成極坐標(biāo)方程可即可;(2)設(shè)的極坐標(biāo)為,利用的面積為,可求出點(diǎn)的極坐標(biāo),代入曲線的極坐標(biāo)方程檢驗(yàn)是否成立即可.
試題解析:(1)曲線的普通方程為,
曲線的極坐標(biāo)方程為: ,( ),
(2)設(shè)的極坐標(biāo)為,( )
∴,
所以點(diǎn)的極坐標(biāo)為,符合方程,
所以點(diǎn)在曲線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù)
(Ⅰ)求不等式的解集;
(Ⅱ)已知函數(shù)的最小值為,若實(shí)數(shù)且,求的
最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)求曲線在點(diǎn)處的切線的斜率;
(Ⅱ)判斷方程(為的導(dǎo)數(shù))在區(qū)間內(nèi)的根的個(gè)數(shù),說明理由;
(Ⅲ)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求函數(shù)的圖象在處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求經(jīng)過橢圓右焦點(diǎn)且與直線垂直的直線的極坐標(biāo)方程;
(2)若為橢圓上任意-點(diǎn),當(dāng)點(diǎn)到直線距離最小時(shí),求點(diǎn)的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)對(duì)任意的, 恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知兩個(gè)正方形ABCD和DCEF不在同一平面內(nèi),M,N分別為AB,DF的中點(diǎn).
(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;
(2)用反證法證明:直線ME與BN是兩條異面直線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,E為AD的中點(diǎn),F為B1C1的中點(diǎn).
(1)求證:A1F∥平面ECC1;
(2)在CD上是否存在一點(diǎn)G,使BG⊥平面ECC1?若存在,請(qǐng)確定點(diǎn)G的位置,并證明你的結(jié)論,若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com