18.三棱錐P-ABC中,PA=4PB=PC=2,∠APB=∠APC=∠BPC=60°,則三棱錐P-ABC的體積為$\frac{2\sqrt{2}}{3}$.

分析 利用三面角公式求出PC與底面所成角的余弦函數(shù)值,然后求出C到底面的距離,底面PAB的面積,即可求解三棱錐的體積.

解答 解:由題意三棱錐P-ABC中,∠APB=∠BPC=∠CPA=60°,可知PC在底面PAB內(nèi)的射影是∠BPA的平分線,
PC與∠BPA的平分線的夾角為θ,由三面角公式可得:cos60°=cos30°cosθ,
可得cosθ=$\frac{\sqrt{3}}{3}$.sinθ=$\frac{\sqrt{6}}{3}$.
C到底面PAB是距離為:PCsinθ=$\frac{2\sqrt{6}}{3}$.
底面PAB三角形的面積為:$\frac{1}{2}×2×\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
三棱錐P-ABC的體積為$\frac{1}{3}×\sqrt{3}×\frac{2\sqrt{6}}{3}$=$\frac{2\sqrt{2}}{3}$.
故答案為:$\frac{2\sqrt{2}}{3}$.

點(diǎn)評(píng) 本題考查三面角公式的應(yīng)用,幾何體的體積的求法,考查計(jì)算能力以及空間想象能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.執(zhí)行如圖的程序框圖,如果輸入的N=100,則輸出的x=( 。
A.0.95B.0.98C.0.99D.1.00

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.由曲線y=$\sqrt{x}$與y=x3所圍圖形的面積可用定積分表示為S=${∫}_{0}^{1}$($\sqrt{x}-{x}^{3}$)dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(題類A)以橢圓$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)短軸端點(diǎn)A(0,1)為直角頂點(diǎn),作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個(gè)符合條件的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若橢圓和雙曲線C:2x2-2y2=1有相同的焦點(diǎn),且該橢圓經(jīng)過(guò)點(diǎn)$({1,-\frac{3}{2}})$,則橢圓的方程為( 。
A.$\frac{x^2}{5}+\frac{y^2}{4}=1$B.$\frac{x^2}{4}+\frac{y^2}{3}=1$C.$\frac{x^2}{4}+\frac{y^2}{5}=1$D.$\frac{x^2}{9}+\frac{y^2}{5}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知cos(B-C)=1-cosA,且b,a,c成等比數(shù)列,求:
(1)sinB•sinC的值;
(2)A;
(3)tanB+tanC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{6}}{3}$,焦距為2$\sqrt{2}$,過(guò)點(diǎn)D(1,0)且不過(guò)點(diǎn)E(2,1)的直線l與橢圓C交于A,B兩點(diǎn),直線AE與直線x=3交于點(diǎn)M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若AB垂直于x軸,求直線MB的斜率;
(3)試判斷直線BM與直線DE的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知{an}是公差不為零的等差數(shù)列,且a1=1,a2是a1與a5的等比中項(xiàng).
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.設(shè)集合A={-1,0,1,2,3},B={x|x<0或x>2},則A∩B=(  )
A.{3}B.{2,3}C.{-1,3}D.{0,1,2}

查看答案和解析>>

同步練習(xí)冊(cè)答案