分析 (1)根據(jù)等差數(shù)列的通項(xiàng)公式,利用等比中項(xiàng)列出方程,求出數(shù)列{an}的通項(xiàng)公式an;
(2)利用公式求出數(shù)列{an}的前n項(xiàng)和Sn.
解答 解:(1)等差數(shù)列{an}中,公差d≠0,且a1=1,
a2是a1與a5的等比中項(xiàng),
∴${{a}_{2}}^{2}$=a1•a5,
即${{(a}_{1}+d)}^{2}$=a1(a1+4d),
∴(1+d)2=1+4d,
解得d=2或d=0(舍去);
∴數(shù)列{an}的通項(xiàng)公式為an=1+2(n-1)=2n-1;
(2)數(shù)列{an}的前n項(xiàng)和為
Sn=$\frac{{n(a}_{1}{+a}_{n})}{2}$=$\frac{n(1+2n-1)}{2}$=n2.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式的應(yīng)用問題,也考查了等比中項(xiàng)的應(yīng)用問題,是基礎(chǔ)題目.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y2=-x | B. | x2=y | C. | y2=-x或x2=y | D. | y2=x或x2=-y |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $2\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com