13.已知數(shù)列:{an}滿足(2n+1)an=(2n-1)an+1(n∈N*),且a1=1.
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$求數(shù)列{bn}的前n項(xiàng)和Tn

分析 (1)通過對(duì)(2n+1)an=(2n-1)an+1(n∈N*)變形可知$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n+1}{2n-1}$,進(jìn)而利用累乘法計(jì)算即得結(jié)論;
(2)通過(1)裂項(xiàng)可知bn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),進(jìn)而并項(xiàng)相加即得結(jié)論.

解答 (1)證明:∵(2n+1)an=(2n-1)an+1(n∈N*),
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{2n+1}{2n-1}$,
又∵a1=1,
∴an=$\frac{{a}_{n}}{{a}_{1}}$=$\frac{{a}_{2}}{{a}_{1}}$•$\frac{{a}_{3}}{{a}_{2}}$•…•$\frac{{a}_{n}}{{a}_{n-1}}$
=$\frac{3}{1}$•$\frac{5}{3}$•…•$\frac{2n-1}{2n-3}$
=$\frac{2n-1}{1}$
=2n-1,
故數(shù)列{an}為等差數(shù)列;
(2)解:由(1)可知bn=$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查裂項(xiàng)相消法,注意解題方法的積累,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點(diǎn)P(2,1)在圓C:x2+y2+ax-2y+b=0上,點(diǎn)P關(guān)于直線x+y-1=0的對(duì)稱點(diǎn)也在圓C上,則實(shí)數(shù)a+b=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.不用計(jì)算器求下列各式的值.
(1)設(shè)${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}$=3,求x+x-1的值;
(2)若xlog34=1,求4x+4-x的值;
(3)[(1-log63)2+log62•log618]÷log64
(4)$\frac{1}{{\sqrt{2}-1}}-{({\frac{3}{5}})^0}+{({\frac{9}{4}})^{-0.5}}+\root{4}{{{{(\sqrt{2}-e)}^4}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若函數(shù)y=x3-3ax+a在(1,2)內(nèi)有極小值,則實(shí)數(shù)a的取值范圍是(1,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.求$\underset{lim}{x→0}$($\frac{1}{x}$-cotx).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{9}$=1上在第一象限內(nèi)的一點(diǎn),過P作實(shí)軸的垂線,垂足為M(10,0),又過M作圓x2+y2=a2的切線,切點(diǎn)為Q,若cos∠MOQ=$\frac{3}{5}$,求雙曲線的方程和點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知命題p:“關(guān)于x,y的方程x2-2ax+y2+2a2-5a+4=0表示圓(a∈R)”,命題q:“?x∈R使得x2+(a-1)x+1<0(a∈R)”
(1)若命題p為真命題,求實(shí)數(shù)a的取值范圍;
(2)若命題p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-alnx+\frac{1}{2}(a∈R)$
(1)求函數(shù)f(x)單調(diào)區(qū)間;
(2)若a=-1,求證:當(dāng)x>1時(shí),f(x)<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)集合A={y|y=2x+1,x<1},B={x|-1-a≤ax+1≤1+a},若A∪B=B,
(1)求集合A;
(2)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案