13.設(shè)點A,B分別是x,y軸上的兩個動點,AB=1.若$\overrightarrow{AC}$=λ$\overrightarrow{BA}$(λ>0).
(Ⅰ)求點C的軌跡Г;
(Ⅱ)過點D作軌跡Г的兩條切線,切點分別為P,Q,過點D作直線m交軌跡Г于不同的兩點E,F(xiàn),交PQ于點K,問是否存在實數(shù)t,使得$\frac{1}{|DE|}$+$\frac{1}{|DF|}$=$\frac{t}{|DK|}$恒成立,并說明理由.

分析 (Ⅰ)由題意可知,C在線段BA的延長線上,設(shè)出A(m,0),B(0,n),可得m2+n2=1,再設(shè)C(x,y),由向量等式把m,n用含有x,y的代數(shù)式表示,代入m2+n2=1可得點C的軌跡Г;
(Ⅱ)分別設(shè)出E,F(xiàn),K的橫坐標分別為:xE,xF,xK,點D(s,t),可得直線PQ的方程為:$\frac{s}{(λ+1)^{2}}x+\frac{t}{{λ}^{2}}y=1$,再設(shè)直線m的方程:y=kx+b,得到t=ks+b,進一步求得xK,聯(lián)立直線方程與橢圓m的方程,利用根與系數(shù)的關(guān)系得到xE+xF,xExF,求得$\frac{|DK|}{|DE|}+\frac{|DK|}{|DF|}$為定值2得答案.

解答 解:(Ⅰ)由題意可知,C在線段BA的延長線上,
設(shè)A(m,0),B(0,n),則m2+n2=1,
再設(shè)C(x,y),
由$\overrightarrow{AC}$=λ$\overrightarrow{BA}$(λ>0),得(x-m,y)=λ(m,-n),
∴$\left\{\begin{array}{l}{x-m=λm}\\{y=-λn}\end{array}\right.$,得$\left\{\begin{array}{l}{m=\frac{x}{1+λ}}\\{n=-\frac{y}{λ}}\end{array}\right.$,
代入m2+n2=1,得$\frac{{x}^{2}}{(1+λ)^{2}}+\frac{{y}^{2}}{{λ}^{2}}=1$;
(Ⅱ)設(shè)E,F(xiàn),K的橫坐標分別為:xE,xF,xK,
設(shè)點D(s,t),則直線PQ的方程為:$\frac{s}{(λ+1)^{2}}x+\frac{t}{{λ}^{2}}y=1$,
設(shè)直線m的方程:y=kx+b,
∴t=ks+b,
得${x}_{K}=\frac{1-\frac{t}{{λ}^{2}}b}{\frac{s}{(λ+1)^{2}}+\frac{t}{{λ}^{2}}k}$,
將直線m代入橢圓方程得:$(\frac{{k}^{2}}{{λ}^{2}}+\frac{1}{(λ+1)^{2}}){x}^{2}+\frac{2kb}{{λ}^{2}}x+\frac{^{2}}{{λ}^{2}}-1=0$,
∴${x}_{E}+{x}_{F}=\frac{-2kb}{\frac{{λ}^{2}}{(λ+1)^{2}}+{k}^{2}},{x}_{E}{x}_{F}$=$\frac{^{2}-{λ}^{2}}{\frac{{λ}^{2}}{(λ+1)^{2}}+{k}^{2}}$.
∴$\frac{|DK|}{|DE|}+\frac{|DK|}{|DF|}=\frac{|{x}_{D}-{x}_{K}|}{|{x}_{D}-{x}_{E}|}+\frac{|{x}_{D}-{x}_{K}|}{|{x}_{D}-{x}_{F}|}$=$|s-\frac{1-\frac{t}{{λ}^{2}}b}{\frac{s}{(λ+1)^{2}}+\frac{t}{{λ}^{2}}k}|$•$\frac{|2{x}_{D}-({x}_{E}+{x}_{F})|}{{|{x}_{D}}^{2}-{x}_{D}({x}_{E}+{x}_{F})+{x}_{E}{x}_{F}|}$=2.
驗經(jīng)證當(dāng)m的斜率不存在時成立,
故存在實數(shù)t=2,使得$\frac{1}{|DE|}$+$\frac{1}{|DF|}$=$\frac{t}{|DK|}$恒成立.

點評 本題考查軌跡方程的求法,考查了直線與圓錐曲線的位置關(guān)系,考查計算能力,是壓軸題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.為了得到y(tǒng)=x2-2x+3的圖象,只需將y=x2的圖象( 。
A.向右平移1個單位,再向下平移2個單位
B.向右平移1個單位,再向上平移2個單位
C.向左平移1個單位,再向上平移2個單位
D.向左平移1個單位,再向下平移2個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)=$\frac{1}{2}$x2+$\frac{x}$+c(b,c為常數(shù))和g(x)=$\frac{1}{4}$x+$\frac{1}{x}$是定義在M={x|1≤x≤4}上的函數(shù),對任意的x∈M,存在x0∈M使得f(x)≥f(x0),g(x)≥g(x0),且f(x0)=g(x0),則f(x)在集合M上的最大值為( 。
A.$\frac{7}{2}$B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+1}\\{-2x}\end{array}}\right.$$\begin{array}{l}(x≤0)\\(x>0)\end{array}$,若f(x)=5,則x的值是( 。
A.-2B.2或$-\frac{5}{2}$C.2或-2D.2或-2或$-\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出下列命題:
①若p∧q為假命題,則p,q均為假命題;
②設(shè)x,y∈R,命題“若xy=0,則x2+y2=0”的否命題是真命題;
③直線和拋物線只有一個公共點是直線和拋物線相切的充要條件.
則其中正確的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)l,m是兩條不同的直線,α,β是兩個不重合的平面,給出下列四個命題:
①若α∥β,l⊥α,則l⊥β;
②若l∥m,l?α,m?β,則α∥β;
③若m⊥α,l⊥m,則l∥α;
④若l∥α,l⊥β,則α⊥β.
其中真命題的序號有①④.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.$函數(shù)f(x)=cos(x-\frac{π}{6})的圖象的一條對稱軸為$( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知f(x)=ln(x+$\frac{4}{x}-a$),若對任意的m∈R,方程f(x)=m均為正實數(shù)解,則實數(shù)a的取值范圍是(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=BB1=1,B1C=2.
(Ⅰ)求證:平面B1AC⊥平面ABB1A1;
(Ⅱ)求直線A1C與平面B1AC所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案