分析 (1)由題意可得$\frac{1}{x}$+$\frac{1}{y}$=($\frac{1}{x}$+$\frac{1}{y}$)(x+y)=2+$\frac{x}{y}$+$\frac{y}{x}$,由基本不等式可得;
(2)由題意和基本不等式可構(gòu)造關(guān)于x+y的不等式,解不等式可得.
解答 解:(1)證明:∵x>0,y>0,x+y=1,
∴$\frac{1}{x}$+$\frac{1}{y}$=($\frac{1}{x}$+$\frac{1}{y}$)(x+y)
=2+$\frac{x}{y}$+$\frac{y}{x}$≥2+2$\sqrt{\frac{x}{y}•\frac{y}{x}}$=4
當(dāng)且僅當(dāng)$\frac{x}{y}$=$\frac{y}{x}$即x=y=$\frac{1}{2}$時(shí)取等號(hào).
∴$\frac{1}{x}$+$\frac{1}{y}$≥4;
(2)∵x2+y2+xy=1,
∴(x+y)2-xy=1,
∴(x+y)2-1=xy≤$(\frac{x+y}{2})^{2}$,
解關(guān)于x+y的不等式可得0≤x+y≤$\frac{4}{3}$
∴x+y的最大值為$\frac{4}{3}$.
點(diǎn)評(píng) 本題考查基本不等式求最值和證明不等式,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com