分析 運(yùn)用正弦定理和三角形的邊角關(guān)系,結(jié)合內(nèi)角和定理可得B,再由向量的數(shù)量積的定義計(jì)算即可得到.
解答 解:由正弦定理可得,
$\frac{BC}{sinA}$=$\frac{AB}{sinC}$,即為$\frac{\sqrt{3}-1}{sinA}$=$\frac{2}{sin\frac{π}{4}}$,
解得sinA=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
由于AB>BC,且sin$\frac{π}{12}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
則有A=$\frac{π}{12}$,
B=π-A-C=π-$\frac{π}{12}$-$\frac{π}{4}$=$\frac{2π}{3}$,
則$\overrightarrow{AB}$•$\overrightarrow{BC}$=|$\overrightarrow{AB}$|•|$\overrightarrow{BC}$|cos($π-\frac{2π}{3}$)
=2×($\sqrt{3}-1$)×$\frac{1}{2}$=$\sqrt{3}$-1.
故答案為:$\sqrt{3}$-1.
點(diǎn)評(píng) 本題考查向量的數(shù)量積的定義和正弦定理的運(yùn)用,同時(shí)考查三角形的邊角關(guān)系,考查運(yùn)算能力,屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [11,+∞) | B. | [13,+∞) | C. | [15,+∞) | D. | [17,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 只有一個(gè) | B. | 至少有一個(gè) | C. | 不存在 | D. | 至多有一個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | α<β | B. | α>β | C. | α+β>3π | D. | α+β<2π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com