分析 作出可行域,變形目標(biāo)函數(shù)可得z=|$\frac{1}{\frac{y}{x}+1}$|,$\frac{y}{x}$表示區(qū)域內(nèi)的點(diǎn)和原點(diǎn)連線的斜率,先求$\frac{y}{x}$的范圍,再由不等式的性質(zhì)可得.
解答 解:作出$\left\{\begin{array}{l}{2x-3y+7≥0}\\{3x-2y-2≤0}\\{x+y-4≥0}\end{array}\right.$所對(duì)應(yīng)的可行域(如圖陰影△ABC),
變形目標(biāo)函數(shù)可得z=|$\frac{x}{y+x}$|=|$\frac{1}{\frac{y}{x}+1}$|,$\frac{y}{x}$表示區(qū)域內(nèi)的點(diǎn)和原點(diǎn)連線的斜率,
數(shù)形結(jié)合可得當(dāng)直線經(jīng)過點(diǎn)A時(shí),$\frac{y}{x}$取最小值,當(dāng)直線經(jīng)過點(diǎn)B時(shí),$\frac{y}{x}$取最大值,
聯(lián)立$\left\{\begin{array}{l}{3x-2y-2=0}\\{x+y-4=0}\end{array}\right.$可解得A(2,2),故$\frac{y}{x}$取最小值為1,
同理聯(lián)立$\left\{\begin{array}{l}{2x-3y+7=0}\\{x+y-4=0}\end{array}\right.$可得B(1,3),故$\frac{y}{x}$取最大值為3,
∴$\frac{y}{x}$∈[1,3],∴$\frac{y}{x}$+1∈[2,4],∴$\frac{1}{\frac{y}{x}+1}$∈[$\frac{1}{4}$,$\frac{1}{2}$],∴|$\frac{1}{\frac{y}{x}+1}$|∈[$\frac{1}{4}$,$\frac{1}{2}$],
故答案為:[$\frac{1}{4}$,$\frac{1}{2}$].
點(diǎn)評(píng) 本題考查簡單線性規(guī)劃,變形并數(shù)形結(jié)合是解決問題的關(guān)鍵,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 52π | B. | 4$\sqrt{13}$π | C. | 13π | D. | $\frac{52}{3}$$\sqrt{13}$π |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com